日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=sinx,g(x)=mx- (m為實數(shù)).
          (1)求曲線y=f(x)在點P(),f()處的切線方程;
          (2)求函數(shù)g(x)的單調(diào)遞減區(qū)間;
          (3)若m=1,證明:當x>0時,f(x)<g(x)+.

          (1)x-y+1-=0
          (2)則g(x)的單調(diào)遞減區(qū)間是(-∞,-),(,+∞).
          (3)見解析

          解析

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)).
          ⑴ 若函數(shù)的圖象在點處的切線的傾斜角為,求上的最小值;
          ⑵ 若存在,使,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),.若
          (1)求的值;
          (2)求的單調(diào)區(qū)間及極值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)f(x)是定義在區(qū)間(1,+∞)上的函數(shù),其導(dǎo)函數(shù)為f′(x).如果存在實數(shù)a和函數(shù)h(x),其中h(x)對任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),則稱函數(shù)f(x)具有性質(zhì)P(a).
          (1)設(shè)函數(shù)f(x)=ln x+ (x>1),其中b為實數(shù).
          ①求證:函數(shù)f(x)具有性質(zhì)P(b);
          ②求函數(shù)f(x)的單調(diào)區(qū)間;
          (2)已知函數(shù)g(x)具有性質(zhì)P(2).給定x1,x2∈(1,+∞),x1<x2,設(shè)m為實數(shù),α=mx1+(1-m)x2,β=(1-m)x1+mx2,且α>1,β>1,若|g(α)-g(β)|<|g(x1)-g(x2)|,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知二次函數(shù)的圖像過點,直線,直線(其中為常數(shù));若直線與函數(shù)的圖像以及直線與函數(shù)以及的圖像所圍成的封閉圖形如陰影所示.
          (1)求;
          (2)求陰影面積關(guān)于的函數(shù)的解析式;
          (3)若過點可作曲線的三條切線,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=ax2-(a+2)x+lnx.
          (1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
          (2)當a>0時,若f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)R),為其導(dǎo)函數(shù),且有極小值
          (1)求的單調(diào)遞減區(qū)間;
          (2)若,當時,對于任意x,的值至少有一個是正數(shù),求實數(shù)m的取值范圍;
          (3)若不等式為正整數(shù))對任意正實數(shù)恒成立,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)
          (1)當時,求的極值;
          (2)若恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)的導(dǎo)函數(shù)。  (1)求函數(shù)的單調(diào)遞減區(qū)間;
          (2)若對一切的實數(shù),有成立,求的取值范圍; 
          (3)當時,在曲線上是否存在兩點,使得曲線在 兩點處的切線均與直線交于同一點?若存在,求出交點縱坐標的最大值;若不存在,請說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案