已知函數(shù)(
).
⑴ 若函數(shù)的圖象在點(diǎn)
處的切線(xiàn)的傾斜角為
,求
在
上的最小值;
⑵ 若存在,使
,求
的取值范圍.
⑴ 在
上的最小值為
;⑵
的取值范圍為
.
解析試題分析:⑴ 對(duì)函數(shù)求導(dǎo)并令導(dǎo)函數(shù)為0,看函數(shù)的單調(diào)性,即可求在
上的最小值;
⑵ 先對(duì)函數(shù)求導(dǎo)得,分
、
兩種情況討論即可求
的取值范圍.
(1) 1分
根據(jù)題意, 3分
此時(shí),,則
.
令- + ↘ ↗
∴當(dāng)時(shí),
最小值為
. 8分
(2)∵,
①若,當(dāng)
時(shí),
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是
的導(dǎo)函數(shù),
,且函數(shù)
的圖象過(guò)點(diǎn)
.
(1)求函數(shù)的表達(dá)式;
(2)求函數(shù)的單調(diào)區(qū)間和極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=ax2-(a+2)x+ln x.
(1)當(dāng)a=1時(shí),求曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(2)當(dāng)a>0時(shí),若f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍;
(3)若對(duì)任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
(1)若在
時(shí)有極值,求實(shí)數(shù)
的值和
的極大值;
(2)若在定義域上是增函數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)。
(1)若的單調(diào)減區(qū)間是
,求實(shí)數(shù)a的值;
(2)若函數(shù)在區(qū)間
上都為單調(diào)函數(shù)且它們的單調(diào)性相同,求實(shí)數(shù)a的取值范圍;
(3)a、b是函數(shù)的兩個(gè)極值點(diǎn),a<b,
。求證:對(duì)任意的
,不等式
成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)。
(1)求函數(shù)在區(qū)間
上的值域;
(2)是否存在實(shí)數(shù)a,對(duì)任意給定的,在區(qū)間
上都存在兩個(gè)不同的
,使得
成立.若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
(1)當(dāng)(
為自然對(duì)數(shù)的底數(shù))時(shí),求
的最小值;
(2)討論函數(shù)零點(diǎn)的個(gè)數(shù);
(3)若對(duì)任意恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
.已知函數(shù)
有兩個(gè)零點(diǎn)
,且
.
(1)求的取值范圍;
(2)證明隨著
的減小而增大;
(3)證明隨著
的減小而增大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=sinx,g(x)=mx- (m為實(shí)數(shù)).
(1)求曲線(xiàn)y=f(x)在點(diǎn)P(),f(
)處的切線(xiàn)方程;
(2)求函數(shù)g(x)的單調(diào)遞減區(qū)間;
(3)若m=1,證明:當(dāng)x>0時(shí),f(x)<g(x)+.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com