過雙曲線

的右頂點作

軸的垂線與

的一條漸近線相交于

.若以

的右焦點為圓心、半徑為4的圓經(jīng)過

,則雙曲線

的方程為( )

B.

C.

D.

試題分析:因為

的漸近線為

,所以

或

因此OA=c=4,從而三角形OAC為正三角形,即

雙曲線

的方程為

.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
在平面直角坐標系

中,已知拋物線

:

,在此拋物線上一點


到焦點的距離是3.
(1)求此拋物線的方程;
(2)拋物線

的準線與

軸交于

點,過

點斜率為

的直線

與拋物線

交于

、

兩點.是否存在這樣的

,使得拋物線

上總存在點

滿足

,若存在,求

的取值范圍;若不存在,說明理由.

查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓

經(jīng)過點

,離心率為

,左右焦點分別為

.

(1)求橢圓的方程;
(2)若直線

與橢圓交于

兩點,與以

為直徑的圓交于

兩點,且滿足

,求直線

的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知動點A、B分別在圖中拋物線y
2=4x及橢圓
+=1的實線上運動,若AB
∥x,點N的坐標為(1,0),則三角形ABN的周長l的取值范圍是______.

查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知點P是拋物線y2=4x上的動點,點P在y軸上的射影是M,點A的坐標是(4,a),則當|a|>4時,|PA|+|PM|的最小值是______.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓C:

(

)的焦距為4,其短軸的兩個端點與長軸的一個端點構成正三角形.
(1)求橢圓C的標準方程;
(2)設F為橢圓C的左焦點,T為直線

上任意一點,過F作TF的垂線交橢圓C于點P,Q.
(i)證明:OT平分線段PQ(其中O為坐標原點);
(ii)當

最小時,求點T的坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設

為拋物線

的焦點,過

且傾斜角為

的直線交

于

,

兩點,則

( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知拋物線

的焦點

到準線的距離為

.過點


作直線

交拋物線

與

兩點(

在第一象限內).
(1)若

與焦點

重合,且

.求直線

的方程;
(2)設

關于

軸的對稱點為

.直線

交

軸于

. 且

.求點

到直線

的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,過拋物線y
2=2px (p>0)的焦點F的直線l交拋物線于點A、B,交其準線于點C,若|BC|=2|BF|,且|AF|=3,則此拋物線方程為( )

A.y
2=9x B.y
2=6x
C.y
2=3x D.y
2=

x
查看答案和解析>>