已知坐標(biāo)平面上點(diǎn)與兩個(gè)定點(diǎn)
的距離之比等于5.
(1)求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么圖形;
(2)記(1)中的軌跡為,過(guò)點(diǎn)
的直線
被
所截得的線段的長(zhǎng)為8,求直線
的方程
(1)點(diǎn)M的軌跡方程是(x-1)2+(y-1)2=25,軌跡是以(1,1)為圓心,以5為半徑的圓
(2)直線l的方程為x=-2,或5x-12y+46=0.
解析試題分析:解:(1)由題意,得=5.
,化簡(jiǎn),得x2+y2-2x-2y-23=0.即(x-1)2+(y-1)2=25.∴點(diǎn)M的軌跡方程是(x-1)2+(y-1)2=25,軌跡是以(1,1)為圓心,以5為半徑的圓.
(2)當(dāng)直線l的斜率不存在時(shí),l:x=-2,此時(shí)所截得的線段的長(zhǎng)為,∴l(xiāng):x=-2符合題意.當(dāng)直線l的斜率存在時(shí),設(shè)l的方程為y-3=k(x+2),即kx-y+2k+3=0,圓心到l的距離
,由題意,得
,解得
.∴直線l的方程為
.即5x-12y+46=0.綜上,直線l的方程為x=-2,或5x-12y+46=0.
考點(diǎn):圓的方程
點(diǎn)評(píng):解決的關(guān)鍵是根據(jù)直接法來(lái)得到點(diǎn)滿足的幾何關(guān)系,然后坐標(biāo)化得到求解,并能結(jié)合直線與圓的位置關(guān)系來(lái)得到,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓(a>b>0)的離心率為
,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)半徑的圓與直線y=x+
相切.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓在
軸上方的一個(gè)交點(diǎn)為
,
是橢圓的右焦點(diǎn),試探究以
為
直徑的圓與以橢圓長(zhǎng)軸為直徑的圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知橢圓C:+
=1(a>b>0)的左、右焦點(diǎn)分別為F
、F
,A是橢圓C上的一點(diǎn),AF
⊥F
F
,O是坐標(biāo)原點(diǎn),OB垂直AF
于B,且OF
=3OB.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)求t∈(0,b),使得命題“設(shè)圓x+y
=t
上任意點(diǎn)M(x
,y
)處的切線交橢圓C于Q
、Q
兩點(diǎn),那么OQ
⊥OQ
”成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知雙曲線,點(diǎn)
、
分別為雙曲線
的左、右焦點(diǎn),動(dòng)點(diǎn)
在
軸上方.
(1)若點(diǎn)的坐標(biāo)為
是雙曲線的一條漸近線上的點(diǎn),求以
、
為焦點(diǎn)且經(jīng)過(guò)點(diǎn)
的橢圓的方程;
(2)若∠,求△
的外接圓的方程;
(3)若在給定直線上任取一點(diǎn)
,從點(diǎn)
向(2)中圓引一條切線,切點(diǎn)為
. 問(wèn)是否存在一個(gè)定點(diǎn)
,恒有
?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為
,
,點(diǎn)
在橢圓
上,過(guò)點(diǎn)
的直線
與拋物線
交于
兩點(diǎn),拋物線
在點(diǎn)
處的切線分別為
,且
與
交于點(diǎn)
.
(1) 求橢圓的方程;
(2) 是否存在滿足的點(diǎn)
? 若存在,指出這樣的點(diǎn)
有幾個(gè)(不必求出點(diǎn)
的坐標(biāo)); 若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
△ABC的兩個(gè)頂點(diǎn)坐標(biāo)分別是B(0,6)和C(0,-6),另兩邊AB、AC的斜率的乘積是-,求頂點(diǎn)A的軌跡方程.?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的方程為左、右焦點(diǎn)分別為F1、F2,焦距為4,點(diǎn)M是橢圓C上一點(diǎn),滿足
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)P(0,2)分別作直線PA,PB交橢圓C于A,B兩點(diǎn),設(shè)直線PA,PB的斜率分別為k1,k2,,求證:直線AB過(guò)定點(diǎn),并求出直線AB的斜率k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的長(zhǎng)軸長(zhǎng)為,焦點(diǎn)是
,點(diǎn)
到直線
的距離為
,過(guò)點(diǎn)
且傾斜角為銳角的直線
與橢圓交于
兩點(diǎn),使得
.
(1)求橢圓的方程;(2)求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線上任意一點(diǎn)
到兩個(gè)定點(diǎn)
,
的距離之和為4.
(1)求曲線的方程;
(2)設(shè)過(guò)(0,-2)的直線與曲線
交于
兩點(diǎn),且
(
為原點(diǎn)),求直線
的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com