如圖,已知橢圓C:+
=1(a>b>0)的左、右焦點(diǎn)分別為F
、F
,A是橢圓C上的一點(diǎn),AF
⊥F
F
,O是坐標(biāo)原點(diǎn),OB垂直AF
于B,且OF
=3OB.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)求t∈(0,b),使得命題“設(shè)圓x+y
=t
上任意點(diǎn)M(x
,y
)處的切線交橢圓C于Q
、Q
兩點(diǎn),那么OQ
⊥OQ
”成立.
(1)橢圓C的離心率為. (2)t=
b∈(0,b)使得所述命題成
解析試題分析:解:(Ⅰ)解法一:由題設(shè)AF⊥F
F
及F
(-c,0),F(xiàn)
(c,0),不妨設(shè)點(diǎn)A(c,y),其中y>0,由于點(diǎn)A在橢圓上,有
+
=1,
+
=1,解得y=
,從而得到A
. 1分
直線AF的方程為y=
(x+c),整理得b
x-2acy+b
c=0. 2分
由題設(shè),原點(diǎn)O到直線AF的距離為
|OF
|,即
=
, 3分
將c=a
-b
代入原式并化簡(jiǎn)得a
=2b
,即a=
b.
∴e==
.即橢圓C的離心率為
. 4分
解法二:點(diǎn)A的坐標(biāo)為. 1分
過點(diǎn)O作OB⊥AF,垂足為B,易知△F
BC∽△F
F
A,
故=
. 2分
由橢圓定義得|AF|+|AF
|=2a,又|BO|=
|OF
|,
所以=
. 3分
解得|FA|=
,而|F
A|=
,得
=
.
∴e==
.即橢圓C的離心率為
. 4分
(Ⅱ)圓x+y
=t
上的任意點(diǎn)M(x
,y
)處的切線方程為x
x+y
y=t
. 5分
當(dāng)t∈(0,b)時(shí),圓x+y
=t
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,
,圓
,一動(dòng)圓在
軸右側(cè)與
軸相切,同時(shí)與圓
相外切,此動(dòng)圓的圓心軌跡為曲線C,曲線E是以
,
為焦點(diǎn)的橢圓。
(1)求曲線C的方程;
(2)設(shè)曲線C與曲線E相交于第一象限點(diǎn)P,且,求曲線E的標(biāo)準(zhǔn)方程;
(3)在(1)、(2)的條件下,直線與橢圓E相交于A,B兩點(diǎn),若AB的中點(diǎn)M在曲線C上,求直線
的斜率
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,動(dòng)點(diǎn)
到兩點(diǎn)
,
的距離之和等于
,設(shè)點(diǎn)
的軌跡為曲線
,直線
過點(diǎn)
且與曲線
交于
,
兩點(diǎn).
(1)求曲線的軌跡方程;
(2)是否存在△面積的最大值,若存在,求出△
的面積;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩定點(diǎn)E(-2,0),F(2,0),動(dòng)點(diǎn)P滿足,由點(diǎn)P向x軸作垂線段PQ,垂足為Q,點(diǎn)M滿足
,點(diǎn)M的軌跡為C.
(1)求曲線C的方程
(2)過點(diǎn)D(0,-2)作直線與曲線C交于A、B兩點(diǎn),點(diǎn)N滿足
(O為原點(diǎn)),求四邊形OANB面積的最大值,并求此時(shí)的直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的長(zhǎng)軸長(zhǎng)為,焦點(diǎn)是
,點(diǎn)
到直線
的距離為
,過點(diǎn)
且傾斜角為銳角的直線
與橢圓交于A、B兩點(diǎn),使得|
=3|
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓過點(diǎn)
,且它的離心率
.直線
與橢圓
交于
、
兩點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)時(shí),求證:
、
兩點(diǎn)的橫坐標(biāo)的平方和為定值;
(Ⅲ)若直線與圓
相切,橢圓上一點(diǎn)
滿足
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓的右焦點(diǎn)
與拋物線
的焦點(diǎn)重合,過
作與
軸垂直的直線與橢圓交于
,而與拋物線交于
兩點(diǎn),且
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過的直線與橢圓
相交于兩點(diǎn)
和
,
設(shè)為橢圓
上一點(diǎn),且滿足
(
為坐標(biāo)原點(diǎn)),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知坐標(biāo)平面上點(diǎn)與兩個(gè)定點(diǎn)
的距離之比等于5.
(1)求點(diǎn)的軌跡方程,并說明軌跡是什么圖形;
(2)記(1)中的軌跡為,過點(diǎn)
的直線
被
所截得的線段的長(zhǎng)為8,求直線
的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系xOy中,橢圓C1: ="1" (a>b>0)的左、右焦點(diǎn)分別為F1、F2, F2也是拋物線C2:y2=4x的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=
.
(1)求C1的方程;
(2)直線l∥OM,與C1交于A、B兩點(diǎn),若·
=0,求直線l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com