日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】從集合的所有非空子集中,等可能地取出個(gè).

          (1)若,求所取子集的元素既有奇數(shù)又有偶數(shù)的概率;

          (2)若,記所取子集的元素個(gè)數(shù)之差為,求的分布列及數(shù)學(xué)期望

          【答案】(1) .

          (2) 分布列見解析,.

          【解析】分析:(1)集合的非空子集數(shù)為,其中非空子集的元素全為

          奇數(shù)的子集數(shù)為,全為偶數(shù)的子集數(shù)為,由古典概型概率公式可得結(jié)果;(2)當(dāng)時(shí),的所有可能取值為,由組合知識(shí),利用古典概型概率公式可得隨機(jī)變量對(duì)應(yīng)的概率,從而可得分布列,進(jìn)而利用期望公式可得其數(shù)學(xué)期望

          詳解(1)當(dāng)時(shí),記事件:“所取子集的元素既有奇數(shù)又有偶數(shù)”.

          則集合的非空子集數(shù)為,其中非空子集的元素全為

          奇數(shù)的子集數(shù)為,全為偶數(shù)的子集數(shù)為

          所以,

          (2)當(dāng)時(shí),的所有可能取值為

          所以的數(shù)學(xué)期望.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)定義域?yàn)?/span>R的函數(shù)

          (1)在平面直角坐標(biāo)系中作出函數(shù)fx)的圖象,并指出fx)的單調(diào)區(qū)間(不需證明);

          2)若方程fx+5a0有兩個(gè)解,求出a的取值范圍(不需嚴(yán)格證明,簡(jiǎn)單說(shuō)明即可);

          3)設(shè)定義域?yàn)?/span>R的函數(shù)gx)為偶函數(shù),且當(dāng)x≥0時(shí),gx)=fx),求gx)的解析式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,且橢圓的離心率為

          (Ⅰ)求橢圓的方程;

          (Ⅱ)設(shè)是橢圓的右頂點(diǎn),過(guò)點(diǎn)作兩條直線分別與橢圓交于另一點(diǎn),若直線的斜率之積為,求證:直線恒過(guò)一個(gè)定點(diǎn),并求出這個(gè)定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的左頂點(diǎn),右焦點(diǎn)分別為,右準(zhǔn)線為

          (1)若直線上不存在點(diǎn),使為等腰三角形,求橢圓離心率的取值范圍;

          (2)在(1)的條件下,當(dāng)取最大值時(shí),點(diǎn)坐標(biāo)為,設(shè)是橢圓上的三點(diǎn),且,求:以線段的中心為原點(diǎn),過(guò)兩點(diǎn)的圓方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某互聯(lián)網(wǎng)公司為了確定下一季度的前期廣告投入計(jì)劃,收集了近個(gè)月廣告投入量單位:萬(wàn)元)和收益單位:萬(wàn)元)的數(shù)據(jù)如下表

          月份

          廣告投入量

          收益

          他們分別用兩種模型①,分別進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計(jì)量的值

          Ⅰ)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)選擇哪個(gè)模型?并說(shuō)明理由;

          Ⅱ)殘差絕對(duì)值大于的數(shù)據(jù)被認(rèn)為是異常數(shù)據(jù),需要剔除

          。┨蕹惓(shù)據(jù)后求出(Ⅰ)中所選模型的回歸方程

          ⅱ)若廣告投入量時(shí),該模型收益的預(yù)報(bào)值是多少

          附:對(duì)于一組數(shù)據(jù),,……,其回歸直線的斜率和截距的最小二乘估計(jì)分別為

          ,.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)到拋物線焦點(diǎn)的距離為

          (1)求的值;

          (2) 設(shè)是拋物線上異于的兩個(gè)不同點(diǎn),過(guò)軸的垂線,與直線交于點(diǎn),過(guò)軸的垂線,與直線交于點(diǎn),過(guò)軸的垂線,與直線分別交于點(diǎn)

          求證:①直線的斜率為定值;

          是線段的中點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了解本屆高二學(xué)生對(duì)文理科的選擇與性別是否有關(guān),現(xiàn)隨機(jī)從高二的全體學(xué)生中抽取了若干名學(xué)生,據(jù)統(tǒng)計(jì),男生35人,理科生40人,理科男生30人,文科女生15人。

          (1)完成如下2×2列聯(lián)表,判斷是否有99.9%的把握認(rèn)為本屆高二學(xué)生“對(duì)文理科的選擇與性別有關(guān)”?

          男生

          女生

          合計(jì)

          文科

          理科

          合計(jì)

          (2)已采用分層抽樣的方式從樣本的所有女生中抽取了5人,現(xiàn)從這5人中隨機(jī)抽取2人參加座談會(huì),求抽到的2人恰好一文一理的概率。

          0.15

          0.10

          0.05

          0.01

          0.005

          0.001

          k

          2.072

          2.706

          3.841

          6.635

          7.879

          10.828

          (參考公式,其中為樣本容量)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四棱錐中,底面為菱形,,,點(diǎn)的中點(diǎn).

          (1)證明:;

          (2)若點(diǎn)為線段的中點(diǎn),平面平面,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          1)當(dāng)時(shí),求證:上是單調(diào)遞減函數(shù);

          2)若函數(shù)有兩個(gè)正零點(diǎn)、,求的取值范圍,并證明:.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案