日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 求圓心在直線x-y-4=0上,并且經過C1x2+y2+2x+8y-8=0和圓C2x2+y2-4x-4y-2=0的交點的圓的方程.
          設所求圓的方程為x2+y2+2x+8y-8+λ(x2+y2-4x-4y-2)=0,
          整理得(1+λ)x2+(1+λ)y2+(2-4λ)x+(8-4λ)y-8-2λ=0,
          ∴圓心坐標為(
          2λ-1
          1+λ
          ,
          2λ-4
          1+λ
          ),
          ∵圓心在直線x-y-4=0上,
          2λ-1
          1+λ
          -
          2λ-4
          1+λ
          -4=0,解得:λ=-
          1
          4
          ,
          ∴所求的圓的方程為x2+y2+4x+12y-10=0.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源:不詳 題型:單選題

          (本題滿分14分)

          已知定點A(-2,0),動點B是圓(F為圓心)上一點,線段AB的垂直平分線交BF于P.
          (1)求動點P的軌跡方程;
          (2)是否存在過點E(0,-4)的直線l交P點的軌跡于點R,T,   且滿足O為原點).若存在,求直線l的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          已知曲線C:(5-2m)x2+(m2+2)y2=4-m2,(m∈R)表示圓,則圓的半徑為(  )
          A.
          5
          B.1C.
          3
          D.3

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          設圓C過點A(1,2),B(3,4),且在x軸上截得的弦長為6,求圓C的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          如圖,已知位于y軸左側的圓C與y軸相切于點(0,1)且被x軸分成的兩段圓弧長之比為1:2,過點H(0,t)的直線l于圓C相交于M、N兩點,且以MN為直徑的圓恰好經過坐標原點O.
          (1)求圓C的方程;
          (2)當t=1時,求出直線l的方程;
          (3)求直線OM的斜率k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          設圓的方程為x2+y2-4x-5=0,
          (1)求該圓的圓心坐標及半徑;
          (2)若此圓的一條弦AB的中點為P(3,1),求直線AB的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:填空題

          已知實數(shù)x,y滿足關系:x2+y2-2x+4y-20=0,則x2+y2的最小值______.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          由圓x2+y2=1外一點P(2,1)引圓的切線,切線長為( 。
          A.
          5
          B.2C.1D.4

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:單選題

          P(5a+1,12a)在圓(x-1)2+y2=1的內部,則a的取值范圍是
          A.|a|<1     B.aC.|a|<  D.|a|<

          查看答案和解析>>

          同步練習冊答案