【題目】如圖,地圖上有一豎直放置的圓形標志物,圓心為C,與地面的接觸點為G.與圓形標志物在同一平面內的地面上點P處有一個觀測點,且PG=50m.在觀測點正前方10m處(即PD=10m)有一個高位10m(即ED=10m)的廣告牌遮住了視線,因此在觀測點所能看到的圓形標志的最大部分即為圖中從A到F的圓。
(1)若圓形標志物半徑為25m,以PG所在直線為X軸,G為坐標原點,建立直角坐標系,求圓C和直線PF的方程;
(2)若在點P處觀測該圓形標志的最大視角(即)的正切值為
,求該圓形標志物的半徑.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C的圓心C在直線上,且與x軸正半軸相切,點C與坐標原點O的距離為
.
(1)求圓C的標準方程;
(2)直線l過點 且與圓C相交于A,B兩點,求弦長
的最小值及此時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,一個正和一個平行四邊形ABDE在同一個平面內,其中
,
,AB,DE的中點分別為F,G.現(xiàn)沿直線AB將
翻折成
,使二面角
為
,設CE中點為H.
(1)(i)求證:平面平面AGH;
(ii)求異面直線AB與CE所成角的正切值;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,
為橢圓
的左、右焦點,動點
的坐標為
,過點
的直線與橢圓交于
,
兩點.
(3)求,
的坐標;
(4)若直線,
,
的斜率之和為0,求
的所有整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知球是正三棱錐(底面為正三角形,頂點在底面的射影為底面中心)
的外接球,
,
,點
在線段
上,且
,過點
作球
的截面,則所得截面圓面積的取值范圍是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是定義在區(qū)間
內的單調函數(shù),且對任意
,都有
,設
為
的導函數(shù),,則函數(shù)
的零點個數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在的表格填上數(shù)字,設在第i行第j列所組成的數(shù)字為
,
,
,則表格中共有5個1的填表方法種數(shù)為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com