日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè),為橢圓的左、右焦點(diǎn),動(dòng)點(diǎn)的坐標(biāo)為,過點(diǎn)的直線與橢圓交于,兩點(diǎn).

          (3)的坐標(biāo);

          (4)若直線,的斜率之和為0,求的所有整數(shù)值.

          【答案】(1),;(2),,.

          【解析】

          試題分析:(1)根據(jù)條件中給出的橢圓的標(biāo)準(zhǔn)方程即可求解;(2)設(shè)出直線的方程,將其與橢圓方程聯(lián)立后利用韋達(dá)定理結(jié)合條件斜率之和為0可得到的函數(shù)表達(dá)式,求得其范圍后即可求解.

          試題解析(1)由橢圓的標(biāo)準(zhǔn)方程是,可知,;(2)當(dāng)直線的斜率不存在時(shí),由對(duì)稱性可知;當(dāng)直線的斜率存在時(shí),設(shè)直線的斜率為,,

          由題意得,,直線的斜率為,直線的斜率為,

          直線的斜率為,由題意得,

          化簡(jiǎn)整理得,

          將直線方程代入橢圓方程,化簡(jiǎn)整理得

          ,

          由韋達(dá)定理得,,代入并化簡(jiǎn)整理得

          ,從而

          當(dāng)時(shí),;

          當(dāng)時(shí),,故的所有整數(shù)值是,,.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),.

          (Ⅰ)若為偶函數(shù),求的值并寫出的增區(qū)間;

          (Ⅱ)若關(guān)于的不等式的解集為,當(dāng)時(shí),求的最小值;

          (Ⅲ)對(duì)任意的,,不等式恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=-x3+2x2+2x,若存在滿足0≤x0≤3的實(shí)數(shù)x0,使得曲線yf(x)在點(diǎn)(x0,f(x0))處的切線與直線xmy-10=0垂直,則實(shí)數(shù)m的取值范圍是(  )

          A. [6,+∞)B. (-∞,2]

          C. [2,6]D. [5,6]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,且過點(diǎn),若點(diǎn)在橢圓C上,則點(diǎn)稱為點(diǎn)M的一個(gè)橢點(diǎn)”.

          1)求橢圓C的標(biāo)準(zhǔn)方程;

          2)若直線與橢圓C相交于AB兩點(diǎn),且A,B兩點(diǎn)的橢點(diǎn)分別為P,Q,以PQ為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),試判斷的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),且函數(shù)為偶函數(shù)。

          1)求的解析式;

          2)若方程有三個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,地圖上有一豎直放置的圓形標(biāo)志物,圓心為C,與地面的接觸點(diǎn)為G.與圓形標(biāo)志物在同一平面內(nèi)的地面上點(diǎn)P處有一個(gè)觀測(cè)點(diǎn),且PG=50m.在觀測(cè)點(diǎn)正前方10m處(即PD=10m)有一個(gè)高位10m(即ED=10m)的廣告牌遮住了視線,因此在觀測(cè)點(diǎn)所能看到的圓形標(biāo)志的最大部分即為圖中從AF的圓弧.

          1)若圓形標(biāo)志物半徑為25m,以PG所在直線為X軸,G為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,求圓C和直線PF的方程;

          2)若在點(diǎn)P處觀測(cè)該圓形標(biāo)志的最大視角(即)的正切值為,求該圓形標(biāo)志物的半徑.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù),.

          1)求證:

          2)若對(duì)于任意,恒成立,求的取值范圍;

          3)若存在,使,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知是雙曲線,)的兩個(gè)頂點(diǎn),點(diǎn)是雙曲線上異于、的一點(diǎn),為坐標(biāo)原點(diǎn),射線交橢圓于點(diǎn),設(shè)直線、、、的斜率分別為、、.

          (1)若雙曲線的漸近線方程是,且過點(diǎn),求的方程;

          (2)在(1)的條件下,如果,求△的面積;

          (3)試問:是否為定值?如果是,請(qǐng)求出此定值;如果不是,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)命題p:實(shí)數(shù)滿足不等式;

          命題q:關(guān)于不等式對(duì)任意的恒成立.

          1)若命題為真命題,求實(shí)數(shù)的取值范圍;

          2)若“為假命題,為真命題,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案