【題目】已知函數(shù)的導(dǎo)函數(shù)為
,
.
(1)當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)若對(duì)滿足的一切
的值,都有
,求實(shí)數(shù)
的取值范圍;
(3)若對(duì)一切
恒成立,求實(shí)數(shù)
的取值范圍.
【答案】(1)函數(shù)的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
;(2)
;(3)
.
【解析】
試題分析:(1)求出,
得增區(qū)間,
得減區(qū)間;(2)
,要使
對(duì)滿足
的一切
成立,根據(jù)一次函數(shù)的幾何性質(zhì)只需
即可;(3)
對(duì)一切
恒成立等價(jià)于
對(duì)一切
恒成立,只需
即可.
試題解析:(1)當(dāng)時(shí),
,令
得
,
故當(dāng)或
時(shí),
,
單調(diào)遞增,
當(dāng)時(shí),
,
單調(diào)遞減,
所以函數(shù)的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
.
(2)因?yàn)?/span>,故
,
令,要使
對(duì)滿足
的一切
成立,
則解得
.
(3)因?yàn)?/span>,所以
,
即對(duì)一切
恒成立,
,令
,
則,因?yàn)?/span>
,所以
,故
在
單調(diào)遞增,
有,因此
,從而
,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在數(shù)列{an}中,Sn為其前n項(xiàng)和,若an>0,且4Sn=an2+2an+1(n∈N*),數(shù)列{bn}為等比數(shù)列,公比q>1,b1=a1,且2b2,b4,3b3成等差數(shù)列.
(1)求{an}與{bn}的通項(xiàng)公式;
(2)令cn= ,若{cn}的前項(xiàng)和為T(mén)n,求證:Tn<6.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A,B,C三地有直道相通,AB=5千米,AC=3千米,BC=4千米.現(xiàn)甲、乙兩警員同時(shí)從A地出發(fā)勻速前往B地,經(jīng)過(guò)t小時(shí),他們之間的距離為(單位:千米).甲的路線是AB,速度是5千米/小時(shí),乙的路線是ACB,速度是8千米/小時(shí),乙到達(dá)B地后原地等待,設(shè)
時(shí),乙到達(dá)C地.
(1)求與
的值;
(2)已知警員的對(duì)講機(jī)的有效通話距離是3千米.當(dāng)時(shí),求
的表達(dá)式,并判斷
在
上的最大值是否超過(guò)3?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線:
(
為參數(shù)),曲線
:
(
為參數(shù)).
(1)設(shè)與
相交于
,
兩點(diǎn),求
;
(2)若把曲線上各點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的
倍,縱坐標(biāo)壓縮為原來(lái)的
倍,得到曲線
,設(shè)點(diǎn)
是曲線
上的一個(gè)動(dòng)點(diǎn),求它到直線
距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形中,
,
分別在
上,且
,沿
將四邊形
折成四邊形
,使點(diǎn)
在平面
上的射影
在直線
上,且
.
(1)求證:平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是數(shù)列
的前n項(xiàng)和,滿足
,正項(xiàng)等比數(shù)列
的前n項(xiàng)和為
,且滿足
.
(Ⅰ) 求數(shù)列{an}和{bn}的通項(xiàng)公式; (Ⅱ) 記,求數(shù)列{cn}的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 是邊長(zhǎng)為3的正方形,
平面
,
平面
,
.
(1)證明:平面平面
;
(2)在上是否存在一點(diǎn)
,使平面
將幾何體
分成上下兩部分的體積比為
?若存在,求出點(diǎn)
的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在
上為增函數(shù),且
,
為常數(shù),
.
(1)求的值;(2)若
在
上為單調(diào)函數(shù),求
的取值范圍;
(3)設(shè),若在
上至少存在一個(gè)
,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(
).
(1)證明:直線過(guò)定點(diǎn);
(2)若直線不經(jīng)過(guò)第四象限,求的取值范圍;
(3)若直線軸負(fù)半軸于
,交
軸正半軸于
,△
的面積為
(
為坐標(biāo)原點(diǎn)),求
的最小值,并求此時(shí)直線
的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com