【題目】如圖,等腰三角形PAD所在平面與菱形ABCD所在平面互相垂直,已知點E,F(xiàn),M,N分別為邊BA,BC,AD,AP的中點.
(1)求證:AC⊥PE;
(2)求證:PF∥平面BNM.
科目:高中數(shù)學 來源: 題型:
【題目】定義域在R的單調(diào)增函數(shù)滿足恒等式
(x,
),且
.
(1)求,
;
(2)判斷函數(shù)的奇偶性,并證明;
(3)若對于任意,都有
成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=2,BC=CC1=,P是BC1上一動點,則A1P+PC的最小值為_________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線與橢圓有相同焦點,且經(jīng)過點(4,6).
(1)求雙曲線方程;
(2)若雙曲線的左,右焦點分別是F1,F2,試問在雙曲線上是否存在點P,使得|PF1|=5|PF2|.請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x-m|-|2x+3m|(m>0).
(1)當m=1時,求不等式f(x)≥1的解集;
(2)對于任意實數(shù)x,t,不等式f(x)<|2+t|+|t-1|恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)等差數(shù)列的首項和公差都是非負的整數(shù),項數(shù)不少于3,且各項和為,則這樣的數(shù)列共有( )
A.2個 B.3個 C.4個 D.5個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知橢圓
的右焦點為
,左、右頂點分別為
、
,上、下頂點分別為
、
,連結(jié)
并延長交橢圓于點
,連結(jié)
,
,記橢圓
的離心率為
.
(1)若,
.
①求橢圓的標準方程;
②求和
的面積之比.
(2)若直線和直線
的斜率之積為
,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com