日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 的三個(gè)內(nèi)角成等差數(shù)列,求證:

          詳見解析.

          解析試題分析:采用分析證明的方法,根據(jù)結(jié)論,可得;再利用A,B,C成等差數(shù)列,可得,利用余弦定理可得成立,代入求解即可證明結(jié)論.
          證明:要證原式成立,只要證  (3分)
          即證,即 (7分)
          而三個(gè)內(nèi)角成等差數(shù)列,上式成立(11分)
          故原式大成立(12分).
          考點(diǎn):1.綜合法與分析法;2.等差數(shù)列的性質(zhì).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知是等差數(shù)列,其中,前四項(xiàng)和
          (1)求數(shù)列的通項(xiàng)公式an; 
          (2)令,①求數(shù)列的前項(xiàng)之和
          是不是數(shù)列中的項(xiàng),如果是,求出它是第幾項(xiàng);如果不是,請(qǐng)說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)等差數(shù)列的前項(xiàng)和為.
          (1)求數(shù)列的通項(xiàng)公式;
          (2)求數(shù)列的前項(xiàng)和,并求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知為公差不為零的等差數(shù)列,首項(xiàng),的部分項(xiàng)、、…、恰為等比數(shù)列,且,
          (1)求數(shù)列的通項(xiàng)公式(用表示);
          (2)若數(shù)列的前項(xiàng)和為,求

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知正項(xiàng)數(shù)列中,其前項(xiàng)和為,且.
          (1)求數(shù)列的通項(xiàng)公式;
          (2)設(shè),,求證:;
          (3)設(shè)為實(shí)數(shù),對(duì)任意滿足成等差數(shù)列的三個(gè)不等正整數(shù) ,不等式都成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (2013•重慶)設(shè)數(shù)列{an}滿足:a1=1,an+1=3an,n∈N+
          (1)求{an}的通項(xiàng)公式及前n項(xiàng)和Sn
          (2)已知{bn}是等差數(shù)列,Tn為前n項(xiàng)和,且b1=a2,b3=a1+a2+a3,求T20

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,且a1=b1=2,b4=54,a1+a2+a3=b2+b3
          (1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
          (2)數(shù)列{cn}滿足cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù), 數(shù)列滿足
          (1)求數(shù)列的通項(xiàng)公式;
          (2)令,若對(duì)一切成立,求最小正整數(shù)m.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)等差數(shù)列滿足,且是方程的兩根。
          (1)求的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案