日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】將函數(shù)f(x)=cos(ωx+φ)(ω>0,|φ|< )的圖象上的每一點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的一半,再將圖象向右平移 個(gè)單位長(zhǎng)度得到函數(shù)y=sinx的圖象.
          (1)直接寫(xiě)出f(x)的表達(dá)式,并求出f(x)在[0,π]上的值域;
          (2)求出f(x)在[0,π]上的單調(diào)區(qū)間.

          【答案】
          (1)解:由題意可得,把函數(shù)y=sinx的圖象向左平移 個(gè)單位長(zhǎng)度得到y(tǒng)=sin(x+ )的圖象,

          再把橫坐標(biāo)縮短為原來(lái)的2倍,可得y=sin( x+ )=cos[ ﹣( x+ )]=cos( x﹣ )的圖象,

          ∵0≤x≤π,∴ ,∴ ,∴ ,

          當(dāng)x=0時(shí), ;當(dāng) 時(shí),f(x)=1


          (2)解:令 ,k∈Z,解得 ,k∈Z,

          所以單調(diào)遞增區(qū)間為 ,k∈Z;

          同理單調(diào)遞減區(qū)間為 ,k∈Z,

          ∵x∈[0,π],∴f(x)的單調(diào)遞增區(qū)間為 ,單調(diào)遞減區(qū)間為


          【解析】(1)利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的定義域和值域,得出結(jié)論.(2)根據(jù)f(x)的解析式,以及正弦函數(shù)的單調(diào)性,得出結(jié)論.
          【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí),掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓C: 的右焦點(diǎn)F( ),過(guò)點(diǎn)F作平行于y軸的直線(xiàn)截橢圓C所得的弦長(zhǎng)為 . (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
          (Ⅱ)過(guò)點(diǎn)(1,0)的直線(xiàn)l交橢圓C于P,Q兩點(diǎn),N點(diǎn)在直線(xiàn)x=﹣1上,若△NPQ是等邊三角形,求直線(xiàn)l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=|xex|,方程f2(x)+tf(x)+1=0(t∈R)有四個(gè)實(shí)數(shù)根,則t的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)n∈N* , n≥3,k∈N*
          (1)求值: ①kCnk﹣nCn1k1;
          (k≥2);
          (2)化簡(jiǎn):12Cn0+22Cn1+32Cn2+…+(k+1)2Cnk+…+(n+1)2Cnn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】關(guān)于函數(shù)f(x)=sin(x﹣)sin(x+),有下列命題:
          ①此函數(shù)可以化為f(x)=﹣sin(2x+);
          ②函數(shù)f(x)的最小正周期是π,其圖象的一個(gè)對(duì)稱(chēng)中心是( , 0);
          ③函數(shù)f(x)的最小值為﹣ , 其圖象的一條對(duì)稱(chēng)軸是x=;
          ④函數(shù)f(x)的圖象向右平移個(gè)單位后得到的函數(shù)是偶函數(shù);
          ⑤函數(shù)f(x)在區(qū)間(﹣ , 0)上是減函數(shù).
          其中所有正確的命題的序號(hào)個(gè)數(shù)是(  )
          A.2
          B.3
          C.4
          D.5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了解學(xué)生寒假期間學(xué)習(xí)情況,學(xué)校對(duì)某班男、女學(xué)生學(xué)習(xí)時(shí)間進(jìn)行調(diào)查,學(xué)習(xí)時(shí)間按整小時(shí)統(tǒng)計(jì),調(diào)查結(jié)果繪成折線(xiàn)圖如下:
          (Ⅰ)已知該校有400名學(xué)生,試估計(jì)全校學(xué)生中,每天學(xué)習(xí)不足4小時(shí)的人數(shù);
          (Ⅱ)若從學(xué)習(xí)時(shí)間不少于4小時(shí)的學(xué)生中選取4人,設(shè)選到的男生人數(shù)為X,求隨機(jī)變量X的分布列;
          (Ⅲ)試比較男生學(xué)習(xí)時(shí)間的方差 與女生學(xué)習(xí)時(shí)間方差 的大。ㄖ恍鑼(xiě)出結(jié)論)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在△ABC 中,角A、B、C所對(duì)的邊分別為a、b、c,且cosA=
          ①求 的值.
          ②若 ,求△ABC的面積S的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]已知曲線(xiàn)C的極坐標(biāo)方程是ρ=2cosθ,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線(xiàn)L的參數(shù)方程是 (t為參數(shù)).
          (1)求曲線(xiàn)C的直角坐標(biāo)方程和直線(xiàn)L的普通方程;
          (2)設(shè)點(diǎn)P(m,0),若直線(xiàn)L與曲線(xiàn)C交于A,B兩點(diǎn),且|PA||PB|=1,求實(shí)數(shù)m的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】通過(guò)隨機(jī)詢(xún)問(wèn)110名性別不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:

          計(jì)

          愛(ài)好

          40

          20

          60

          不愛(ài)好

          20

          30

          50

          計(jì)

          60

          50

          110

          根據(jù)上述數(shù)據(jù)能得出的結(jié)論是(
          (參考公式與數(shù)據(jù):X2= .當(dāng)X2>3.841時(shí),有95%的把握說(shuō)事件A與B有關(guān);當(dāng)X2>6.635時(shí),有99%的把握說(shuō)事件A與B有關(guān); 當(dāng)X2<3.841時(shí)認(rèn)為事件A與B無(wú)關(guān).)
          A.有99%的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
          B.有99%的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
          C.在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
          D.在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案