【題目】已知圓的圓心為
,點(diǎn)
是圓
上的動(dòng)點(diǎn),點(diǎn)
,線段
的垂直平分線交
于
點(diǎn).
(1)求點(diǎn)的軌跡
的方程;
(2)過(guò)點(diǎn)作斜率不為0的直線
與(1)中的軌跡
交于
,
兩點(diǎn),點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
,連接
交
軸于點(diǎn)
,求
.
【答案】(1);(2)
.
【解析】分析:(1)利用待定系數(shù)法求出點(diǎn)在以
、
為焦點(diǎn),長(zhǎng)軸長(zhǎng)為4的橢圓上,點(diǎn)
的軌跡
的方程為
.(2)先求出點(diǎn)Q的坐標(biāo),再利用兩點(diǎn)間的距離公式求
.
詳解:(1)由題意知,線段的垂直平分線交
于
點(diǎn),所以
,
∴,
∴點(diǎn)在以
、
為焦點(diǎn),長(zhǎng)軸長(zhǎng)為4的橢圓上,
,
,
,
∴點(diǎn)的軌跡
的方程為
.
(2)依題意可設(shè)直線方程為
,將直線方程代入
,
化簡(jiǎn)得,
設(shè)直線與橢圓
的兩交點(diǎn)為
,
,
由,得
,①
且,
,②
因?yàn)辄c(diǎn)關(guān)于
軸的對(duì)稱點(diǎn)為
,則
,可設(shè)
,
所以,
所以所在直線方程為
,
令,得
,③
把②代入③,得,
∴點(diǎn)的坐標(biāo)為
,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面ABCD⊥平面CDEF,且四邊形ABCD是梯形,四邊形CDEF是矩形,∠BAD=∠CDA=90°,AB=AD=DE=CD,M是線段DE上的動(dòng)點(diǎn).
(1)試確定點(diǎn)M的位置,使BE∥平面MAC,并說(shuō)明理由;
(2)在(1)的條件下,四面體E-MAC的體積為3,求線段AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列為等差數(shù)列,
,
.
(1) 求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),圓
.
(1)若直線過(guò)點(diǎn)
且在兩坐標(biāo)軸上截距之和等于
,求直線
的方程;
(2)設(shè)是圓
上的動(dòng)點(diǎn),求
(
為坐標(biāo)原點(diǎn))的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,
,
,
為
的中點(diǎn).
.
(1)求證:平面平面
;
(2)若為
的中點(diǎn),求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)是否存在負(fù)實(shí)數(shù)a,使,函數(shù)有最小值-3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解某校學(xué)生課外時(shí)間的分配情況,擬采用分層抽樣的方法從該校的高一、高二、高三這三個(gè)年級(jí)中共抽取5個(gè)班進(jìn)行調(diào)查,已知該校的高一、高二、高三這三個(gè)年級(jí)分別有18、6、6個(gè)班級(jí).
(Ⅰ)求分別從高一、高二、高三這三個(gè)年級(jí)中抽取的班級(jí)個(gè)數(shù);
(Ⅱ)若從抽取的5個(gè)班級(jí)中隨機(jī)抽取2個(gè)班級(jí)進(jìn)行調(diào)查結(jié)果的對(duì)比,求這2個(gè)班級(jí)中至少有1個(gè)班級(jí)來(lái)自高一年級(jí)的概率。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com