【題目】如圖,在三棱錐中,
,
,
為
的中點.
.
(1)求證:平面平面
;
(2)若為
的中點,求二面角
的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)連接,利用勾股定理證得
和
,進而得證;
(2)以為坐標(biāo)原點,分別以
為
軸建立空間直角坐標(biāo)系,分別求得平面
和平面
的法向量,進而利用數(shù)量積求夾角即可
解:(1)連接,因為
為
的中點,
所以,
因為,
所以,所以
,
在中,因為
,
所以,
,
在中,
,所以
,即
,
因為,所以
平面ABC,
又因為平面
,所以平面
平面
(2)解:由(1)得,
故以為坐標(biāo)原點,分別以
為
軸建立空間直角坐標(biāo)系,如圖所示,
由題,,
,
,
因為為
的中點,所以
的坐標(biāo)為
,
所以,
,
設(shè)為平面
的一個法向量,
則,得
,取
,則
,
,即
由(1),平面
平面
,平面
平面
,
平面
,所以
平面
,
為平面
的一個法向量,
,
,
所以二面角的余弦值為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量與向量
的對應(yīng)關(guān)系用
表示.
(1) 證明:對于任意向量、
及常數(shù)m、n,恒有
;
(2) 證明:對于任意向量,
;
(3) 證明:對于任意向量、
,若
,則
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,
,
,
、
分別為邊
、
的中點,沿
將
折起,點
折至
處(
與
不重合),若
、
分別為線段
、
的中點,則在
折起過程中( )
A.可以與
垂直
B.不能同時做到平面
且
平面
C.當(dāng)時,
平面
D.直線、
與平面
所成角分別為
、
,
、
能夠同時取得最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心為
,點
是圓
上的動點,點
,線段
的垂直平分線交
于
點.
(1)求點的軌跡
的方程;
(2)過點作斜率不為0的直線
與(1)中的軌跡
交于
,
兩點,點
關(guān)于
軸的對稱點為
,連接
交
軸于點
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA⊥平面ABCD,四邊形ABCD是矩形,,
,點F為PB中點,點E在邊BC上移動.
(Ⅰ)求證:PD∥平面AFC;
(Ⅱ)若,求證:
;
(Ⅲ)若二面角的大小為60°,則CE為何值時,三棱錐
的體積為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中, 正確說法的個數(shù)是( )
①在用列聯(lián)表分析兩個分類變量
與
之間的關(guān)系時,隨機變量
的觀測值
越大,說明“A與B有關(guān)系”的可信度越大
②以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè)
,將其變換后得到線性方程
,則
,
的值分別是
和 0.3
③已知兩個變量具有線性相關(guān)關(guān)系,其回歸直線方程為,若
,
,
,則
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),且曲線
上的點
對應(yīng)的參數(shù)
,以
為極點,
軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的普通方程和極坐標(biāo)方程;
(2)若曲線上的
兩點滿足
,過
作
交
于點
,求證:點
在以
為圓心的定圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自2016年1月1日起,我國全面二孩政策正式實施,這次人口與生育政策的歷史性調(diào)整,使得“要不要再生一個”,“生二孩能休多久產(chǎn)假”等問題成為千千萬萬個家庭在生育決策上避不開的話題.為了解針對產(chǎn)假的不同安排方案形成的生育意愿,某調(diào)查機構(gòu)隨機抽取了200戶有生育二胎能力的適齡家庭進行問卷調(diào)查,得到如下數(shù)據(jù):
產(chǎn)假安排(單位:周) | 14 | 15 | 16 | 17 | 18 |
有生育意愿家庭數(shù) | 4 | 8 | 16 | 20 | 26 |
(1)若用表中數(shù)據(jù)所得的頻率代替概率,面對產(chǎn)假為14周與16周,估計某家庭有生育意愿的概率分別為多少?
(2)假設(shè)從5種不同安排方案中,隨機抽取2種不同安排分別作為備選方案,然后由單位根據(jù)單位情況自主選擇.
①求兩種安排方案休假周數(shù)和不低于32周的概率;
②如果用表示兩種方案休假周數(shù)之和.求隨機變量
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com