【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)
在區(qū)間
上的最值;
(2)討論的單調(diào)性.
【答案】(1),
;(2)當(dāng)
時(shí),
在
上單調(diào)遞增;當(dāng)
時(shí),
在
上單調(diào)遞減,在
上單調(diào)遞增;當(dāng)
時(shí),
在
上單調(diào)遞減.
【解析】
(1)求導(dǎo)的定義域,求導(dǎo)函數(shù),利用函數(shù)的最值在極值處與端點(diǎn)處取得,即可求得
在區(qū)間
上的最值;
(2)求導(dǎo)函數(shù),分類(lèi)討論,利用導(dǎo)數(shù)的正負(fù),可確定函數(shù)的單調(diào)性;
解:(1)當(dāng)時(shí),
,
所以,
因?yàn)?/span>的定義域?yàn)?/span>
,
所以由,可得
.
因?yàn)?/span>,
,
,
所以在上,
,
.
(2)由題可得,
,
①當(dāng),即
時(shí),
,所以
在
上單調(diào)遞減;
②當(dāng)時(shí),
,
所以在
上單調(diào)遞增;
③當(dāng)時(shí),由
可得
,即
,
由可得
,即
,
所以在
上單調(diào)遞減,
在上單調(diào)遞增.
綜上:當(dāng)時(shí),
在
上單調(diào)遞增;
當(dāng)時(shí),
在
上單調(diào)遞減,
在上單調(diào)遞增;
當(dāng)時(shí),
在
上單調(diào)遞減.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)在區(qū)間
上存在零點(diǎn),則實(shí)數(shù)
的取值范圍為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
的上頂點(diǎn)為A,以A為圓心,橢圓的長(zhǎng)半軸為半徑的圓與y軸的交點(diǎn)分別為
、
.
(1)求橢圓的方程;
(2)設(shè)不經(jīng)過(guò)點(diǎn)A的直線與橢圓
交于P、Q兩點(diǎn),且
,試探究直線
是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出該定點(diǎn)的坐標(biāo),若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知焦點(diǎn)在x軸上的橢圓有一個(gè)內(nèi)含圓x2+y2=
,該圓的垂直于x軸的切線交橢圓于點(diǎn)M,N,且
(O為原點(diǎn)).
(1)求b的值;
(2)設(shè)內(nèi)含圓的任意切線l交橢圓于點(diǎn)A、B.求證:,并求|AB|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,
底面
,△ABC是邊長(zhǎng)為
的正三角形,
,D,E分別為AB,BC的中點(diǎn).
(Ⅰ)求證:平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在線段上是否存在一點(diǎn)M,使
平面
?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的是( )
A.對(duì)具有線性相關(guān)關(guān)系的變量有一組觀測(cè)數(shù)據(jù)
,其線性回歸方程是
,且
,則實(shí)數(shù)
的值是
B.正態(tài)分布在區(qū)間
和
上取值的概率相等
C.若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的值越接近于1
D.若一組數(shù)據(jù)的平均數(shù)是2,則這組數(shù)據(jù)的眾數(shù)和中位數(shù)都是2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,圓
:
,直線
:
,直線
過(guò)點(diǎn)
,傾斜角為
,以原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.
(1)寫(xiě)出直線與圓
的交點(diǎn)極坐標(biāo)及直線
的參數(shù)方程;
(2)設(shè)直線與圓
交于
,
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的個(gè)數(shù)是( )
①設(shè)某大學(xué)的女生體重與身高
具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)
,用最小二乘法建立的線性回歸方程為
,則若該大學(xué)某女生身高增加
,則其體重約增加
;
②關(guān)于的方程
的兩根可分別作為橢圓和雙曲線的離心率;
③過(guò)定圓上一定點(diǎn)
作圓的動(dòng)弦
,
為原點(diǎn),若
,則動(dòng)點(diǎn)
的軌跡為橢圓;
④已知是橢圓
的左焦點(diǎn),設(shè)動(dòng)點(diǎn)
在橢圓上,若直線
的斜率大于
,則直線
(
為原點(diǎn))的斜率的取值范圍是
.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),討論函數(shù)
的單調(diào)性;
(2)若函數(shù)在區(qū)間
上無(wú)零點(diǎn),求
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com