【題目】已知等差數(shù)列的公差d>0,則下列四個(gè)命題:
①數(shù)列是遞增數(shù)列; ②數(shù)列
是遞增數(shù)列;
③數(shù)列是遞增數(shù)列; ④數(shù)列
是遞增數(shù)列.
其中正確命題的個(gè)數(shù)為( )
A.1B.2C.3D.4
【答案】B
【解析】
根據(jù)等差數(shù)列的通項(xiàng)公式和前項(xiàng)和公式,結(jié)合數(shù)列的通項(xiàng)公式的函數(shù)性質(zhì)進(jìn)行求解即可.
①:因?yàn)閿?shù)列是等差數(shù)列,
所以,
因此可以把看成關(guān)于
的一次函數(shù),
而,所以數(shù)列
是遞增數(shù)列,因此本命題是真命題;
②:因?yàn)閿?shù)列是等差數(shù)列,
所以,
因此可以把看成關(guān)于
的二次函數(shù),而二次函數(shù)的單調(diào)性與開口和對(duì)稱軸有關(guān),
雖然能確定開口方向,但是不能確定對(duì)稱軸的位置,故不能判斷數(shù)列
的單調(diào)性,故本命題是假命題;
③:因?yàn)閿?shù)列是等差數(shù)列,
所以,
設(shè),因此數(shù)列
的通項(xiàng)公式為:
,
顯然當(dāng)時(shí),數(shù)列
是常數(shù)列,故本命題是假命題;
④:因?yàn)閿?shù)列是等差數(shù)列,
所以,
設(shè),因此數(shù)列
的通項(xiàng)公式為
,
所以可以把看成關(guān)于
的一次函數(shù),
而,所以數(shù)列
是遞增數(shù)列,因此本命題是真命題.
故選:B
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強(qiáng)總理在本屆政府工作報(bào)告中向全國(guó)人民發(fā)出的口號(hào).某生產(chǎn)企業(yè)積極響應(yīng)號(hào)召,大力研發(fā)新產(chǎn)品,為了對(duì)新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:
試銷單價(jià) | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量 | 84 | 83 | 80 | 75 | 68 |
已知.
(1)求出的值;
(2)已知變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量
(件)關(guān)于試銷單價(jià)
(元)的線性回歸方程
;可供選擇的數(shù)據(jù):
,
;
(3)用表示用(2)中所求的線性回歸方程得到的與
對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)
對(duì)應(yīng)的殘差的絕對(duì)值
時(shí),則將銷售數(shù)據(jù)
稱為一個(gè)“好數(shù)據(jù)”.現(xiàn)從6個(gè)銷售數(shù)據(jù)中任取3個(gè),求“好數(shù)據(jù)”個(gè)數(shù)
的分布列和數(shù)學(xué)期望
.
(參考公式:線性回歸方程中的最小二乘估計(jì)分別為
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)求函數(shù)圖像在
處的切線方程;
(2)證明:;
(3)若不等式對(duì)于任意的
均成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線
的方程是:
,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)設(shè)過原點(diǎn)的直線與曲線
交于
,
兩點(diǎn),且
,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的左右焦點(diǎn)分別
,過
作垂直于
軸的直線
交橢圓于
兩點(diǎn),滿足
.
(1)求橢圓的離心率.
(2)是橢圓
短軸的兩個(gè)端點(diǎn),設(shè)點(diǎn)
是橢圓
上一點(diǎn)(異于橢圓
的頂點(diǎn)),直線
分別與
軸相交于
兩點(diǎn),
為坐標(biāo)原點(diǎn),若
,求橢圓
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
(1)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(2)能否有99%的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓
的離心率為
,且經(jīng)過點(diǎn)
.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在過點(diǎn)的直線
與
相交于不同的兩點(diǎn)
,滿足
?
若存在,求出直線的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且
時(shí)
有極大值
.
(Ⅰ)求的解析式;
(Ⅱ)若為
的導(dǎo)函數(shù),不等式
(
為正整數(shù))對(duì)任意正實(shí)數(shù)
恒成立,求
的最大值.(注:
).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com