日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的方程是: ,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.

          (1)求曲線(xiàn)的極坐標(biāo)方程;

          (2)設(shè)過(guò)原點(diǎn)的直線(xiàn)與曲線(xiàn)交于, 兩點(diǎn),且,求直線(xiàn)的斜率.

          【答案】(1);(2).

          【解析】試題分析:

          1將直角坐標(biāo)方程轉(zhuǎn)化為極坐標(biāo)方程可得曲線(xiàn)的極坐標(biāo)方程為.

          2)法1:由圓的弦長(zhǎng)公式可得圓心到直線(xiàn)距離,由幾何關(guān)系可得直線(xiàn)的斜率為.

          2:設(shè)直線(xiàn) 為參數(shù)),與圓的直角坐標(biāo)方程聯(lián)立,利用直線(xiàn)參數(shù)的幾何意義可得直線(xiàn)的斜率為.

          3:設(shè)直線(xiàn) 與圓的方程聯(lián)立,結(jié)合圓錐曲線(xiàn)的弦長(zhǎng)公式可得直線(xiàn)的斜率為.

          4:設(shè)直線(xiàn) ,結(jié)合弦長(zhǎng)公式可得圓心到直線(xiàn)距離,利用點(diǎn)到直線(xiàn)距離公式解方程可得直線(xiàn)的斜率為.

          試題解析:

          1)曲線(xiàn) ,即,

          代入得

          曲線(xiàn)的極坐標(biāo)方程為.

          2)法1:由圓的弦長(zhǎng)公式,得圓心到直線(xiàn)距離

          如圖,在中,易得,可知

          直線(xiàn)的斜率為.

          2:設(shè)直線(xiàn) 為參數(shù)),代入中得,整理得

          ,即,

          解得,從而得直線(xiàn)的斜率為.

          3:設(shè)直線(xiàn) ,代入中得

          ,即

          ,即

          解得直線(xiàn)的斜率為.

          4:設(shè)直線(xiàn) ,則圓心到直線(xiàn)的距離為

          由圓的弦長(zhǎng)公式,得圓心到直線(xiàn)距離,

          所以,解得直線(xiàn)的斜率為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】小華與另外名同學(xué)進(jìn)行“手心手背”游戲,規(guī)則是:人同時(shí)隨機(jī)選擇手心或手背其中一種手勢(shì),規(guī)定相同手勢(shì)人數(shù)更多者每人得分,其余每人得分.現(xiàn)人共進(jìn)行了次游戲,記小華次游戲得分之和為,則為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          (Ⅰ)求證:;

          (Ⅱ)若對(duì)恒成立,求的最大值與的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】四棱錐中,底面是邊長(zhǎng)為2的菱形,,的中點(diǎn),平面,與平面所成的角的正弦值為

          (1)在棱上求一點(diǎn),使平面

          (2)求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知, ,點(diǎn)是動(dòng)點(diǎn),且直線(xiàn)和直線(xiàn)的斜率之積為.

          (1)求動(dòng)點(diǎn)的軌跡方程;

          (2)設(shè)直線(xiàn)與(1)中軌跡相切于點(diǎn),與直線(xiàn)相交于點(diǎn),判斷以為直徑的圓是否過(guò)軸上一定點(diǎn)?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,某公園有三條觀光大道圍成直角三角形,其中直角邊,斜邊.現(xiàn)有甲、乙、丙三位小朋友分別在大道上嬉戲,所在位置分別記為點(diǎn)

          (1)若甲乙都以每分鐘的速度從點(diǎn)出發(fā)在各自的大道上奔走,到大道的另一端

          時(shí)即停,乙比甲遲2分鐘出發(fā),當(dāng)乙出發(fā)1分鐘后,求此時(shí)甲乙兩人之間的距離;

          (2)設(shè),乙丙之間的距離是甲乙之間距離的2倍,且,請(qǐng)將甲

          乙之間的距離表示為θ的函數(shù),并求甲乙之間的最小距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知等差數(shù)列的公差d0,則下列四個(gè)命題:

          ①數(shù)列是遞增數(shù)列; ②數(shù)列是遞增數(shù)列;

          ③數(shù)列是遞增數(shù)列; ④數(shù)列是遞增數(shù)列.

          其中正確命題的個(gè)數(shù)為(

          A.1B.2C.3D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在三棱錐中,ABC是等邊三角形,ABAD,CBCD,點(diǎn)PAC的中點(diǎn),記BPD、ABD的面積分別為,,二面角ABDC的大小為,

          證明:(Ⅰ)平面ACD平面BDP

          (Ⅱ)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,在直角梯形中,,分別是、上的點(diǎn),,且(如圖①).將四邊形沿折起,連接、(如圖②).在折起的過(guò)程中,則下列表述:

          平面;

          ②四點(diǎn)、可能共面;

          ③若,則平面平面;

          ④平面與平面可能垂直.其中正確的是__________.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案