日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】下表中的數(shù)表為森德拉姆篩”(森德拉姆,東印度學(xué)者),其特點是每行每列都成等差數(shù)列.

          2

          3

          4

          5

          6

          7

          3

          5

          7

          9

          11

          13

          4

          7

          10

          13

          16

          19

          5

          9

          13

          17

          21

          25

          6

          11

          16

          21

          26

          31

          7

          13

          19

          25

          31

          37

          在上表中,2017出現(xiàn)的次數(shù)為(

          A. 18 B. 36 C. 48 D. 72

          【答案】B

          【解析】

          1行數(shù)組成的數(shù)列是以2為首項,公差為1的等差數(shù)列,第列數(shù)組成的數(shù)列是以為首項,公差為j的等差數(shù)列,求出通項公式,就求出結(jié)果.

          記第行第列的數(shù)為,那么每一組的解就對應(yīng)表中的一個數(shù).因為第1行的數(shù)組成的數(shù)列)是以2為首項,公差為1的等差數(shù)列,所以;又第列數(shù)組成的數(shù)列)是以為首項,公差為的等差數(shù)列,所以.,則.據(jù)此易知,2017出現(xiàn)的次數(shù)為.

          故選B.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直角梯形中, , .直角梯形通過直角梯形以直線為軸旋轉(zhuǎn)得到,且使平面平面. 為線段的中點, 為線段上的動點.

          (1)求證: ;

          (2)當(dāng)點是線段中點時,求二面角的余弦值;

          (3)是否存在點,使得直線平面?請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓.

          1)求圓心C的坐標(biāo)及半徑r的大;

          2)已知不過原點的直線l與圓C相切,且在x軸、y軸上的截距相等,求直線l的方程;

          3)從圓外一點向圓引一條切線,切點為MO為坐標(biāo)原點,且,求點P的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知以為圓心的圓及其上一點.

          1)設(shè)圓軸相切,與圓外切,且圓心在直線上,求圓的方程;

          2)設(shè)垂直于的直線與圓相交于兩點,且,求直線的方程;

          3)設(shè)點滿足:存在圓上的兩點,使得,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】廟會是我國古老的傳統(tǒng)民俗文化活動,又稱“廟市”或 “節(jié)場”.廟會大多在春節(jié)、元宵節(jié)等節(jié)日舉行.廟會上有豐富多彩的文化娛樂活動,如“砸金蛋”(游玩者每次砸碎一顆金蛋,如果有獎品,則“中獎”).今年春節(jié)期間,某校甲、乙、丙、丁四位同學(xué)相約來到某廟會,每人均獲得砸一顆金蛋的機會.游戲開始前,甲、乙、丙、丁四位同學(xué)對游戲中獎結(jié)果進(jìn)行了預(yù)測,預(yù)測結(jié)果如下:

          甲說:“我或乙能中獎”; 乙說:“丁能中獎”;

          丙說:“我或乙能中獎”; 丁說:“甲不能中獎”.

          游戲結(jié)束后,這四位同學(xué)中只有一位同學(xué)中獎,且只有一位同學(xué)的預(yù)測結(jié)果是正確的,則中獎的同學(xué)是( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一塊黃銅板上插著三根寶石針,在其中一根針上從下到上穿好由大到小的若干金片.若按照下面的法則移動這些金片:每次只能移動一片金片;每次移動的金片必須套在某根針上;大片不能疊在小片上面.設(shè)移完片金片總共需要的次數(shù)為,可推得.求移動次數(shù)的程序框圖模型如圖所示,則輸出的結(jié)果是( )

          A. 1022 B. 1023 C. 1024 D. 1025

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某地區(qū)高考實行新方案,規(guī)定:語文、數(shù)學(xué)和英語是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個科目中選取三個科目作為選考科目,若一名學(xué)生從六個科目中選出了三個科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.

          某學(xué)校為了了解高一年級420名學(xué)生選考科目的意向,隨機選取30名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計選考科目人數(shù)如下表:

          性別

          選考方案確定情況

          物理

          化學(xué)

          生物

          歷史

          地理

          政治

          男生

          選考方案確定的有8人

          8

          8

          4

          2

          1

          1

          選考方案待確定的有6人

          4

          3

          0

          1

          0

          0

          女生

          選考方案確定的有10人

          8

          9

          6

          3

          3

          1

          選考方案待確定的有6人

          5

          4

          1

          0

          0

          1

          (Ⅰ)估計該學(xué)校高一年級選考方案確定的學(xué)生中選考生物的學(xué)生有多少人?

          (Ⅱ)假設(shè)男生、女生選擇選考科目是相互獨立的.從選考方案確定的8位男生隨機選出1人,從選考方案確定的10位女生中隨機選出1人,試求該男生和該女生的選考方案中都含有歷史科目的概率;

          (Ⅲ)從選考方案確定的8名男生隨機選出2名,設(shè)隨機變量兩名男生選考方案相同時,兩名男生選考方案不同時,求的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計如下表:

          (1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程

          (2)若近幾年該農(nóng)產(chǎn)品每千克的價格 (單位:元)與年產(chǎn)量滿足的函數(shù)關(guān)系式為,且每年該農(nóng)產(chǎn)品都能售完.

          ①根據(jù)(1)中所建立的回歸方程預(yù)測該地區(qū)年該農(nóng)產(chǎn)品的產(chǎn)量;

          ②當(dāng)為何值時,銷售額最大?

          附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)當(dāng)時,求函數(shù)的極小值;

          2)若上,使得成立,求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案