日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語(yǔ)文、數(shù)學(xué)和英語(yǔ)是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個(gè)科目中選取三個(gè)科目作為選考科目,若一名學(xué)生從六個(gè)科目中選出了三個(gè)科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個(gè)選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.

          某學(xué)校為了了解高一年級(jí)420名學(xué)生選考科目的意向,隨機(jī)選取30名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計(jì)選考科目人數(shù)如下表:

          性別

          選考方案確定情況

          物理

          化學(xué)

          生物

          歷史

          地理

          政治

          男生

          選考方案確定的有8人

          8

          8

          4

          2

          1

          1

          選考方案待確定的有6人

          4

          3

          0

          1

          0

          0

          女生

          選考方案確定的有10人

          8

          9

          6

          3

          3

          1

          選考方案待確定的有6人

          5

          4

          1

          0

          0

          1

          (Ⅰ)估計(jì)該學(xué)校高一年級(jí)選考方案確定的學(xué)生中選考生物的學(xué)生有多少人?

          (Ⅱ)假設(shè)男生、女生選擇選考科目是相互獨(dú)立的.從選考方案確定的8位男生隨機(jī)選出1人,從選考方案確定的10位女生中隨機(jī)選出1人,試求該男生和該女生的選考方案中都含有歷史科目的概率;

          (Ⅲ)從選考方案確定的8名男生隨機(jī)選出2名,設(shè)隨機(jī)變量?jī)擅猩x考方案相同時(shí),兩名男生選考方案不同時(shí),求的分布列及數(shù)學(xué)期望.

          【答案】;(;.

          【解析】試題分析:設(shè)該學(xué)校選考方案確定的學(xué)生中選考生物的學(xué)生為(人);(根據(jù)古典概型概率公式可得該男生和該女生的選考方案中都含有歷史科目的概率為;(由題意知的所有可能取值為,根據(jù)古典概型概率公式計(jì)算出兩隨機(jī)變量對(duì)應(yīng)的概率,可得到分布列,從而根據(jù)期望公式可得的值.

          試題解析:(設(shè)該學(xué)校選考方案確定的學(xué)生中選考生物的學(xué)生為

          (人),

          所以該學(xué)校選考方案確定的學(xué)生中選考生物的學(xué)生為.

          該男生和該女生的選考方案中都含有歷史科目的概率為

          .

          )由題意知的所有可能取值為

          所以的分布列為

          期望為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          (1)若處取得極值,求實(shí)數(shù)的值.

          (2)求函數(shù)的單調(diào)區(qū)間.

          (3)若上沒(méi)有零點(diǎn),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在銳角中,, _______,求的周長(zhǎng)的取值范圍.

          ,,且;

          ,.

          注:這三個(gè)條件中選一個(gè),補(bǔ)充在上面的問(wèn)題中并對(duì)其進(jìn)行求解,如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下表中的數(shù)表為森德拉姆篩”(森德拉姆,東印度學(xué)者),其特點(diǎn)是每行每列都成等差數(shù)列.

          2

          3

          4

          5

          6

          7

          3

          5

          7

          9

          11

          13

          4

          7

          10

          13

          16

          19

          5

          9

          13

          17

          21

          25

          6

          11

          16

          21

          26

          31

          7

          13

          19

          25

          31

          37

          在上表中,2017出現(xiàn)的次數(shù)為(

          A. 18 B. 36 C. 48 D. 72

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某公司欲生產(chǎn)一款迎春工藝品回饋消費(fèi)者,工藝品的平面設(shè)計(jì)如圖所示,該工藝品由直角和以為直徑的半圓拼接而成,點(diǎn)為半圈上一點(diǎn)(異于,),點(diǎn)在線段上,且滿足.已知,設(shè).

          1)為了使工藝禮品達(dá)到最佳觀賞效果,需滿足,且達(dá)到最大.當(dāng)為何值時(shí),工藝禮品達(dá)到最佳觀賞效果;

          2)為了工藝禮品達(dá)到最佳穩(wěn)定性便于收藏,需滿足,且達(dá)到最大.當(dāng)為何值時(shí),取得最大值,并求該最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          (Ⅰ)當(dāng)時(shí),(i)求曲線在點(diǎn)處的切線方程;

          (ii)求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)若,求證: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知雙曲線C,O為坐標(biāo)原點(diǎn),FC的右焦點(diǎn),過(guò)F的直線與C的兩條漸近線的交點(diǎn)分別為M、N.OMN為直角三角形,則|MN|=

          A. B. 3 C. D. 4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率,過(guò)且與軸垂直的直線與橢圓在第一象限內(nèi)的交點(diǎn)為,且.

          (1)求橢圓的方程;

          (2)過(guò)點(diǎn)的直線交橢圓兩點(diǎn),當(dāng)時(shí),求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】,其中為函數(shù)的導(dǎo)數(shù)若對(duì)于,,則稱函數(shù)D上的凸函數(shù).

          求證:函數(shù)是定義域上的凸函數(shù);

          已知函數(shù),上的凸函數(shù).

          求實(shí)數(shù)a的取值范圍;

          求函數(shù)的最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案