日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,過(guò)動(dòng)點(diǎn),垂足在線段上且異于點(diǎn),連接,沿折起,使(如圖2所示),

          1)當(dāng)的長(zhǎng)為多少時(shí),三棱錐的體積最大;

          2)當(dāng)三棱錐的體積最大時(shí),設(shè)點(diǎn)分別為棱的中點(diǎn),試在棱上確定一點(diǎn),使得,并求與平面所成角的大小.

          【答案】1 ;(2,

          【解析】

          1)設(shè),先利用線面垂直的判定定理證明即為三棱錐的高,再將三棱錐的體積表示為的函數(shù),最后利用導(dǎo)數(shù)求函數(shù)的最大值即可;

          2)由(1)可先建立空間直角坐標(biāo)系,寫(xiě)出相關(guān)點(diǎn)的坐標(biāo)和相關(guān)向量的坐標(biāo),設(shè)出動(dòng)點(diǎn)的坐標(biāo),先利用線線垂直的充要條件計(jì)算出點(diǎn)坐標(biāo),從而確定點(diǎn)位置,再求平面的法向量,從而利用夾角公式即可求得所求線面角

          (1)設(shè),則

          ∵折起前,∴折起后

          平面

          設(shè),

          ,∴上為增函數(shù),在上為減函數(shù)

          ∴當(dāng)時(shí),函數(shù)取最大值

          ∴當(dāng)時(shí),三棱錐的體積最大;

          (2)以為原點(diǎn),建立如圖直角坐標(biāo)系,

          由(1)知,三棱錐的體積最大時(shí),,

          ,且

          設(shè),則

          ,∴

          ,∴,

          ∴當(dāng)時(shí),

          設(shè)平面的一個(gè)法向量為,由

          ,取

          設(shè)與平面所成角為,則

          與平面所成角的大小為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)fx)=x22acoskπlnxkN*,aRa0).

          1)討論函數(shù)fx)的單調(diào)性;

          2)若k2018,關(guān)于x的方程fx)=2ax有唯一解,求a的值;

          3)當(dāng)k2019時(shí),證明:對(duì)一切x∈(0,+∞),都有成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】普通高中國(guó)家助學(xué)金,用于資助家庭困難的在校高中生.在本地,助學(xué)金分一等和二等兩類,一等助學(xué)金每學(xué)期1250元,二等助學(xué)金每學(xué)期750元,并規(guī)定:屬于農(nóng)村建檔立卡戶的學(xué)生評(píng)一等助學(xué)金.某班有10名獲得助學(xué)金的貧困學(xué)生,其中有3名屬于農(nóng)村建檔立卡戶,這10名學(xué)生中有4名獲一等助學(xué)金,另6名獲二等助學(xué)金.現(xiàn)從這10名學(xué)生中任選3名參加座談會(huì).

          )若事件A表示“選出的3名同學(xué)既有建檔立卡戶學(xué)生,又有非建檔立卡戶學(xué)生”,求A的概率;

          )設(shè)X為選出的3名同學(xué)一學(xué)期獲助學(xué)金的總金額,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(本小題滿分12分)

          中,內(nèi)角對(duì)邊的邊長(zhǎng)分別是,已知,

          的面積等于,求;

          ,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的上頂點(diǎn)為,以為圓心橢圓的長(zhǎng)半軸為半徑的圓與軸的交點(diǎn)分別為,

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)設(shè)不經(jīng)過(guò)點(diǎn)的直線與橢圓交于,兩點(diǎn),且,試探究直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出該定點(diǎn)的坐標(biāo),若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】”是“直線與直線平行”的( )

          A. 充分而不必要條件B. 必要而充分不條件

          C. 充要條件D. 既不充分也不必要條件

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了解學(xué)生課外使用手機(jī)的情況,某研究學(xué)習(xí)小組為研究學(xué)校學(xué)生一個(gè)月使用手機(jī)的總時(shí)間,收集了500名學(xué)生201912月課余使用手機(jī)的總時(shí)間(單位:小時(shí))的數(shù)據(jù).從中隨機(jī)抽取了50名學(xué)生,將數(shù)據(jù)進(jìn)行整理,得到如圖所示的頻率分布直方圖.已知這50人中,恰有2名女生的課余使用手機(jī)總時(shí)間在區(qū)間,現(xiàn)在從課余使用手總時(shí)間在樣本對(duì)應(yīng)的學(xué)生中隨機(jī)抽取2人,則至少抽到1名女生的概率為(

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在數(shù)列中,,.數(shù)列滿足,且.

          1)求的值;

          2)求數(shù)列的通項(xiàng)公式;

          3)設(shè)數(shù)列的前項(xiàng)和為,若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知P3,)是橢圓C1上的點(diǎn),QP關(guān)于x軸的對(duì)稱點(diǎn),橢圓C的離心率為.

          1)求橢圓C的方程;

          2AB是橢圓上位于直線PQ兩側(cè)的動(dòng)點(diǎn).

          ①若直線AB的斜率為,求四邊形APBQ面積的最大值.

          ②當(dāng)AB在運(yùn)動(dòng)過(guò)程中滿足∠APQ=∠BPQ時(shí),問(wèn)直線AB的斜率是否為定值,并說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案