【題目】已知函數(shù).
(1)當時,求函數(shù)
的最值;
(2)當時,對任意
都有
恒成立,求實數(shù)
的取值范圍;
(3)當時,設(shè)函數(shù)
,數(shù)列
滿足
,
,求證:
,
.
【答案】(1),無最大值.(2)
(3)見解析
【解析】試題分析:(1)先求導數(shù),再求導函數(shù)零點,列表分析導函數(shù)符號變化規(guī)律確定單調(diào)性,進而確定最值(2)當時
,利用導數(shù)易得
為單調(diào)遞增函數(shù),且
,因此
(3)先證明
為單調(diào)遞增函數(shù),再利用數(shù)學歸納法證明
試題解析:(1)∵,∴
,
∴,令
,得
,則
隨
變化如下:
所以,無最大值.
(2)設(shè),則
,
當時,且
,
,函數(shù)
在
上是增加的,
∴,
成立;
當時,令
,得
,當
,
,
函數(shù)在
上是減小的,而
,所以,當
時,
,
所以不恒成立,
綜上,對任意都有
恒成立時,
.
(3)∵,∴
,
又,當
時,
,∴
在
上是增加的,
所以,當
時,∵
,∴
,
而,∴
成立.
,假設(shè)
時,
成立,那么當
時,
,
而,∴
成立.
綜合,
得:
,
成立.
科目:高中數(shù)學 來源: 題型:
【題目】綜合題。
(1)已知點A(﹣1,﹣2)和B(﹣3,6),直線l經(jīng)過點P(1,﹣5).且與直線AB平行,求直線l的方程
(2)求垂直于直線x+3y﹣5=0,且與點P(﹣1,0)的距離是 的直線m的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,有兩條相交成60°角的直線xx′,yy′,交點是O,甲、乙分別在Ox,Oy上,起初甲離O點3km,乙離O點1km,后來兩人同時用每小時4km的速度,甲沿xx′方向,乙沿y′y方向步行,問:
(1)用包含t的式子表示t小時后兩人的距離;
(2)什么時候兩人的距離最短?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個盒子里裝有大小均勻的8個小球,其中有紅色球4個,編號分別為1,2,3,4;白色球4個,編號分別為2,3,4,5. 從盒子中任取4個小球(假設(shè)取到任何一個小球的可能性相同).
(1)求取出的4個小球中,含有編號為4的小球的概率;
(2)在取出的4個小球中,小球編號的最大值設(shè)為,求隨機變量
的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列各組函數(shù)是同一函數(shù)的是( )
A. 與
B. 與g(x)=2x﹣1
C.f(x)=x0與g(x)=1
D.f(x)=x2﹣2x﹣1與g(t)=t2﹣2t﹣1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列函數(shù)中,既是奇函數(shù)又是增函數(shù)的是( )
A.y=x+1
B.y=﹣x2
C.y=x|x|
D.y=x﹣1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個結(jié)論中:
(1)如果兩個函數(shù)都是增函數(shù),那么這兩個函數(shù)的積運算所得函數(shù)為增函數(shù);
(2)奇函數(shù)f(x)在[0,+∞)上是增函數(shù),則f(x)在R上為增函數(shù);
(3)既是奇函數(shù)又是偶函數(shù)的函數(shù)只有一個;
(4)若函數(shù)f(x)的最小值是a,最大值是b,則f(x)值域為[a,b].
其中正確結(jié)論的序號為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列函數(shù)中為偶函數(shù)又在(0,+∞)上是增函數(shù)的是( )
A.y=( )|x|
B.y=x2
C.y=|lnx|
D.y=2﹣x
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com