分析 (1)過(guò)點(diǎn)P作PE⊥BC于E,利用勾股定理求出AC的長(zhǎng),AP=2t,CQ=t,則PC=10-2t,又PE∥AB,根據(jù)平行線分線段成比例列出比例式即可得出PE的長(zhǎng),再由三角形的面積公式即可得出結(jié)論;
(2)假設(shè)四邊形ABQP與△CPQ的面積相等,則S△PCQ=$\frac{1}{2}$S△ABC,再判斷出方程根的情況即可;
(3)有三種情況:①PC=QC,②PQ=QC,③PQ=PC,代入得出關(guān)于t的方程,求出方程的解即可.
解答 解:(1)過(guò)點(diǎn)P作PE⊥BC于E.
Rt△ABC中,AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=$\sqrt{{6}^{2}+{8}^{2}}$=10(米),
由題意知:AP=2t,CQ=t,則PC=10-2t
由AB⊥BC,PE⊥BC得PE∥AB
∴$\frac{PE}{AB}$=$\frac{PC}{AC}$,
即:$\frac{PE}{6}$=$\frac{10-2t}{10}$,
∴PE=$\frac{3}{5}$(10-2t)=-$\frac{6}{5}$t+6,
又∵S△ABC=$\frac{1}{2}$×6×8=24,
∴S=S△ABC-S△PCQ=24-$\frac{1}{2}$•t•(-$\frac{6}{5}$t+6)=$\frac{3}{5}$t2-3t+22,
即:S=$\frac{3}{5}$t2-3t+24.
(2)假設(shè)四邊形ABQP與△CPQ的面積相等,則有:$\frac{3}{5}$t2-3t+24=12
即:t2-5t+20=0
∵b2-4ac=(-5)2-4×1×20<0
∴方程無(wú)實(shí)根
∴在P、Q兩點(diǎn)移動(dòng)的過(guò)程中,四邊形ABQP與△CPQ的面積不能相等.
(3)(2)解:①當(dāng)PC=QC時(shí),有t=10-2t,t=$\frac{10}{3}$,
②當(dāng)PQ=QC時(shí),有 $\frac{\frac{1}{2}(10-2t)}{t}$=$\frac{4}{5}$,解得t=$\frac{25}{9}$ (秒),
③當(dāng)PQ=PC時(shí),有 $\frac{\frac{1}{2}t}{10-2t}$=$\frac{4}{5}$,解得t=$\frac{80}{21}$(秒),
所以,當(dāng)t為 $\frac{10}{3}$秒、$\frac{25}{9}$秒、$\frac{80}{21}$秒時(shí),△PQC為等腰三角形.
點(diǎn)評(píng) 本題主要考查對(duì)等腰三角形的性質(zhì),勾股定理,三角形的面積,矩形的性質(zhì),平行線分線段成比例定理等知識(shí)點(diǎn)的理解和掌握,能綜合運(yùn)用這些性質(zhì)進(jìn)行計(jì)算是解此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{8}$ | B. | $\frac{1}{8}$ | C. | -8 | D. | 8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com