【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)m°得到△EDC,若點(diǎn)A、D、E在同一直線上,∠ACB=n°,則∠ADC的度數(shù)是( 。
A. (m﹣n)°B. (90+n-m)°C. (90-
n+m)°D. (180﹣2n﹣m)°
【答案】B
【解析】
根據(jù)旋轉(zhuǎn)的性質(zhì)即可得到∠ACD和∠CAD的度數(shù),再根據(jù)三角形內(nèi)角和定理進(jìn)行解答即可.
解:∵將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)m°得到△EDC.
∴∠DCE=∠ACB=n°,∠ACE=m°,AC=CE,
∴∠ACD=m°-n°,
∵點(diǎn)A,D,E在同一條直線上,
∴∠CAD=(180°-m°),
∵在△ADC中,∠ADC+∠DAC+∠DCA=180°,
∴∠ADC=180°-∠CAD-∠ACD=180°-(180°-m°)-(m°-n°)=90°+n°-
m°=(90+n-
m)°,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】作圖題:如圖,在平面直角坐標(biāo)系中,
,
,
(1)畫(huà)出的
邊上的高CH;
(2)將平移到
(點(diǎn)
和點(diǎn)
對(duì)應(yīng),點(diǎn)
和點(diǎn)
對(duì)應(yīng),點(diǎn)
和點(diǎn)
對(duì)應(yīng)),若點(diǎn)
的坐標(biāo)為
,請(qǐng)畫(huà)出平移后的
;
(3)若,
為平面內(nèi)一點(diǎn),且滿(mǎn)足
與
全等,請(qǐng)直接寫(xiě)出點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)拼一拼,畫(huà)一畫(huà):請(qǐng)你用4個(gè)長(zhǎng)為a,寬為b的矩形拼成一個(gè)大正方形,并且正中間留下一個(gè)洞,這個(gè)洞恰好是一個(gè)小正方形。
(2)用不同方法計(jì)算中間的小正方形的面積,聰明的你能發(fā)現(xiàn)什么?
(3)當(dāng)拼成的這個(gè)大正方形邊長(zhǎng)比中間小正方形邊長(zhǎng)多3cm時(shí),它的面積就多24cm2,求中間小正方形的邊長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)P是AB的中點(diǎn),的延長(zhǎng)線于點(diǎn)E,連接AE,過(guò)點(diǎn)A作
交DP于點(diǎn)F,連接BF、
下列結(jié)論中:
≌
;
;
是等邊三角形;
;
其中正確的是
A. B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角梯形ABCD中, ,
,
,
.
(1)如圖1,連接AC,求證:CA是的平分線;
(2)線段BC上一點(diǎn)E,將 沿AE翻折,點(diǎn)B落到點(diǎn)F處,射線EF與線段CD交于點(diǎn)M.
①如圖2,當(dāng)點(diǎn)M與點(diǎn)D重合時(shí),求證: ;
②如圖3,當(dāng)點(diǎn)M不與點(diǎn)D重合時(shí),求證: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】類(lèi)比學(xué)習(xí):
一動(dòng)點(diǎn)沿著數(shù)軸向右平移個(gè)單位,再向左平移
個(gè)單位,相當(dāng)于向右平移
個(gè)單位.用有理數(shù)加法表示為
.若坐標(biāo)平面上的點(diǎn)做如下平移:沿
軸方向平移的數(shù)量為
(向右為正,向左為負(fù),平移
個(gè)單位),沿
軸方向平移的數(shù)量為
(向上為正,向下為負(fù),平移
個(gè)單位),則把有序數(shù)對(duì)
叫做這一平移的“平移量”;“平移量”
與“平移量”
的加法運(yùn)算法則為
解決問(wèn)題:
(1)計(jì)算:;
(2)動(dòng)點(diǎn)從坐標(biāo)原點(diǎn)
出發(fā),先按照“平移量”
平移到
,再按照“平移量”
平移到
:若先把動(dòng)點(diǎn)
按照.“平移量”
平移到
,再按照“平移量”
平移,最后的位置還是
嗎?在圖1中畫(huà)出四邊形
.
(3)如圖2,一艘船從碼頭出發(fā),先航行到湖心島碼頭
,再?gòu)拇a頭
航行到碼頭
,最后回到出發(fā)點(diǎn)
.請(qǐng)用“平移量”加法算式表示它的航行過(guò)程.
解:(1)______;
(2)答:______;
(3)加法算式:______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算或化簡(jiǎn):
(1)2﹣1+
(2)2x2y(﹣3xy)÷(xy)2
(3)(﹣2a)(3a2﹣a+3)
(4)(x+3)(x+4)﹣(x﹣1)2
(5)[2a3x2(a﹣2x)﹣a2x2]÷(﹣ax)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(1,a),將線段OA平移至線段BC,B(b,0),a是m+6n的算術(shù)平方根,=3,n=
,且m<n,正數(shù)b滿(mǎn)足(b+1)2=16.
(1)直接寫(xiě)出A、B兩點(diǎn)坐標(biāo)為:A ,B ;
(2)如圖1,連接AB、OC,求四邊形AOCB的面積;
(3)如圖2,若∠AOB=a,點(diǎn)P為y軸正半軸上一動(dòng)點(diǎn),試探究∠CPO與∠BCP之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABF中,∠F=90°,點(diǎn)C是線段BF上異于點(diǎn)B和點(diǎn)F的一點(diǎn),連接AC,過(guò)點(diǎn)C作CD⊥AC交AB于點(diǎn)D,過(guò)點(diǎn)C作CE⊥AB交AB于點(diǎn)E,則下列說(shuō)法中,錯(cuò)誤的是( )
A.△ABC中,AB邊上的高是CEB.△ABC中,BC邊上的高是AF
C.△ACD中,AC邊上的高是CED.△ACD中,CD邊上的高是AC
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com