日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 7.如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M、N分別為AC、CD的中點(diǎn),連接BM、MN、BN.求證:BM=MN.

          分析 根據(jù)三角形中位線定理得MN=$\frac{1}{2}$AD,根據(jù)直角三角形斜邊中線定理得BM=$\frac{1}{2}$AC,即可得出結(jié)論.

          解答 證明:在△CAD中,∵M(jìn)、N分別是AC、CD的中點(diǎn),
          ∴MN∥AD,MN=$\frac{1}{2}$AD,
          在Rt△ABC中,∵M(jìn)是AC中點(diǎn),
          ∴BM=$\frac{1}{2}$AC,
          ∵AC=AD,
          ∴BM=MN.

          點(diǎn)評(píng) 本題考查三角形中位線定理、直角三角形斜邊中線定理、勾股定理等知識(shí),解題的關(guān)鍵是靈活應(yīng)用這些知識(shí)解決問(wèn)題,屬于中考?碱}型.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

          17.下列方程中,解為x=-2的方程是(  )
          A.2x+5=1-xB.3-2(x-1)=7-xC.x-2=-2-xD.1-$\frac{1}{4}$x=$\frac{1}{4}$x

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

          18.已知,如圖,CB是⊙O的切線,切點(diǎn)為B,連接OC,半徑OA⊥OC,連接AB交OC于點(diǎn)D,若OD=1,OA=3,則BC=4.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

          15.如圖,在邊長(zhǎng)為acm的正方形紙片的四角處各剪去邊長(zhǎng)為xcm的正方形,然后沿虛線折疊成一個(gè)無(wú)蓋的長(zhǎng)方體盒子,則盒子的容積為a2x-4ax2+4x3cm3,當(dāng)a=8cm,x=1.5cm時(shí),盒子的容積為37.5cm3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          2.給出三個(gè)多項(xiàng)式:$\frac{1}{2}$x2+2x-1,$\frac{1}{2}$x2+4x+1,$\frac{1}{2}$x2-2x,請(qǐng)選擇你最喜歡的兩個(gè)多項(xiàng)式進(jìn)行加法運(yùn)算,并求當(dāng)x=-2時(shí)該式的結(jié)果.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          12.如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)分別為(3,-1),(6,-4),(8,-2).
          (1)將△ABC沿x軸翻折得△A1B1C1,請(qǐng)畫(huà)出圖形并直接寫(xiě)出A1,B1,C1的坐標(biāo)分別為(3,1),(6,4),(8,2);
          (2)將△ABC沿y軸向下平移2個(gè)單位,再向右平移1個(gè)單位得△A2B2C2,請(qǐng)畫(huà)出圖形并直接寫(xiě)出△A2B2C2的A2,B2點(diǎn)坐標(biāo)為(4,-2),(7,-6).(3,4)或(0,4)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          19.已知:如圖在Rt△ABC中,∠BAC=90°.
          (1)按要求作出圖形:①延長(zhǎng)BC到點(diǎn)D,使CD=BC;
          ②延長(zhǎng)CA到點(diǎn)E,使AE=2CA;
          ③連接AD,BE.
          (2)猜想(1)中線段 AD與BE的大小關(guān)系,并寫(xiě)出證明思路.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          16.已知:如圖,△ABC為等邊三角形,過(guò)AB邊上的點(diǎn)D作DG∥BC,交AC于G,在GD的延長(zhǎng)線上取點(diǎn)E,使DE=DB,連接AE,CD.
          (1)求證:△AGE≌△DAC;
          (2)把線段DC沿DE方向向左平移,當(dāng)D平移至點(diǎn)E的位置時(shí),點(diǎn)C恰好與線段BC上的點(diǎn)F重合(如圖),請(qǐng)連接AF,并判斷△AEF是怎樣的三角形,試證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

          17.已知7是關(guān)于x的方程3x-2a=9的解,則a的值為6.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案