分析 (1)連結(jié)OA、AD,如圖,根據(jù)圓周角定理得到∠DAC=90°,∠ADC=∠B=60°,則∠ACD=30°,再根據(jù)切線的性質(zhì)得∠OAP=90°,接著計(jì)算出∠P=30°,即∠P=∠ACP,然后根據(jù)等腰三角形的判定定理即可得到結(jié)論;
(2)在Rt△AOP中利用含30度的直角三角形三邊的關(guān)系得到OP=2OA,即OD+PD=2OA,于是可計(jì)算出OA,從而得到⊙O的直徑.
解答 (1)證明:連結(jié)OA、AD,如圖,
∵CD是⊙O的直徑,
∴∠DAC=90°,
∵∠ADC=∠B=60°,
∴∠ACD=30°,
∵PA為⊙O的切線,
∴OA⊥PA,
∴∠OAP=90°,
∵∠AOD=2∠ACD=60°,
∴∠P=90°-60°=30°,
∴∠P=∠ACP,
∴AP=AC;
(2)解:在Rt△AOP中,∵∠P=30°,
∴OP=2OA,
即OD+PD=2OA,
∴OA+$\sqrt{3}$=2OA,解得OA=$\sqrt{3}$,
∴⊙O的直徑為2$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑.運(yùn)用切線的性質(zhì)來(lái)進(jìn)行計(jì)算或論證,常通過(guò)作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{10}$ | B. | $\frac{1}{9}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com