題目列表(包括答案和解析)
設A是由m×n個實數組成的m行n列的數表,滿足:每個數的絕對值不大于1,且所有數的和為零,記s(m,n)為所有這樣的數表構成的集合。
對于A∈S(m,n),記ri(A)為A的第ⅰ行各數之和(1≤ⅰ≤m),Cj(A)為A的第j列各數之和(1≤j≤n):
記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 對如下數表A,求K(A)的值;
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)設數表A∈S(2,3)形如
1 |
1 |
c |
a |
b |
-1 |
求K(A)的最大值;
(3)給定正整數t,對于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因為,
所以
(2) 不妨設.由題意得
.又因為
,所以
,
于是,
,
所以,當
,且
時,
取得最大值1。
(3)對于給定的正整數t,任給數表如下,
|
|
… |
|
|
|
… |
|
任意改變A的行次序或列次序,或把A中的每一個數換成它的相反數,所得數表
,并且
,因此,不妨設
,
且。
由得定義知,
,
又因為
所以
所以,
對數表:
1 |
1 |
… |
1 |
|
… |
|
|
|
… |
|
-1 |
… |
-1 |
則且
,
綜上,對于所有的,
的最大值為
設A是如下形式的2行3列的數表,
a |
b |
c |
d |
e |
f |
滿足性質P:a,b,c,d,e,f,且a+b+c+d+e+f=0
記為A的第i行各數之和(i=1,2),
為A的第j列各數之和(j=1,2,3)記
為
中的最小值。
(1)對如下表A,求的值
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)設數表A形如
1 |
1 |
-1-2d |
d |
d |
-1 |
其中,求
的最大值
(3)對所有滿足性質P的2行3列的數表A,求的最大值。
【解析】(1)因為,
,所以
(2),
因為,所以
,
所以
當d=0時,取得最大值1
(3)任給滿足性質P的數表A(如圖所示)
a |
b |
c |
d |
e |
f |
任意改變A的行次序或列次序,或把A中的每個數換成它的相反數,所得數表仍滿足性質P,并且
,因此,不妨設
,
,
由得定義知,
,
,
,
從而
所以,,由(2)知,存在滿足性質P的數表A使
,故
的最大值為1
【考點定位】此題作為壓軸題難度較大,考查學生分析問題解決問題的能力,考查學生嚴謹的邏輯思維能力
已知曲線C:(m∈R)
(1) 若曲線C是焦點在x軸點上的橢圓,求m的取值范圍;
(2) 設m=4,曲線c與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線c交于不同的兩點M、N,直線y=1與直線BM交于點G.求證:A,G,N三點共線。
【解析】(1)曲線C是焦點在x軸上的橢圓,當且僅當解得
,所以m的取值范圍是
(2)當m=4時,曲線C的方程為,點A,B的坐標分別為
,
由,得
因為直線與曲線C交于不同的兩點,所以
即
設點M,N的坐標分別為,則
直線BM的方程為,點G的坐標為
因為直線AN和直線AG的斜率分別為
所以
即,故A,G,N三點共線。
如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點,且DE∥BC,DE=2,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.
(1) 求證:A1C⊥平面BCDE;
(2) 若M是A1D的中點,求CM與平面A1BE所成角的大。
(3) 線段BC上是否存在點P,使平面A1DP與平面A1BE垂直?說明理由
【解析】(1)∵DE∥BC∴
∴
∴
∴
又∵
∴
(2)如圖,以C為坐標原點,建立空間直角坐標系C-xyz,
則
設平面的法向量為
,則
,又
,
,所以
,令
,則
,所以
,
設CM與平面所成角為
。因為
,
所以
所以CM與平面所成角為
。
已知m>1,直線,橢圓C:
,
、
分別為橢圓C的左、右焦點.
(Ⅰ)當直線過右焦點時,求直線的方程;
(Ⅱ)設直線與橢圓C交于A、B兩點,△A、△B
的重心分別為G、H.若原點O在以線段GH為直徑的圓內,求實數m的取值范圍.[
【解析】第一問中因為直線經過點
(
,0),所以
=
,得
.又因為m>1,所以
,故直線的方程為
第二問中設,由
,消去x,得
,
則由,知
<8,且有
由題意知O為的中點.由
可知
從而
,設M是GH的中點,則M(
).
由題意可知,2|MO|<|GH|,得到范圍
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com