日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (3)設(shè)“果圓 的方程為.. 查看更多

           

          題目列表(包括答案和解析)

          設(shè)橢圓的方程為=1(m、n>0),過原點(diǎn)且傾角為θ和π-θ(0<θ<)的兩條直線分別交橢圓于A、C和B、D兩點(diǎn).

          (1)

          用θ、m、n表示四邊形ABCD的面積S

          (2)

          若m、n為定值,當(dāng)θ在(0,]上變化時(shí),求S的最大值u

          (3)

          如果u>mn,求的取值范圍

          查看答案和解析>>

          已知橢圓的方程為,點(diǎn)P的坐標(biāo)為(-a,b).

          (1)若直角坐標(biāo)平面上的點(diǎn)M、A(0,-b),B(a,0)滿足,求點(diǎn)M的坐標(biāo);(2)設(shè)直線l1:y=k1x+p交橢圓于C、D兩點(diǎn),交直線l2:y=k2x于點(diǎn)E.,證明:E為CD的中點(diǎn);

          (3)對于橢圓上的點(diǎn)Q(acos,bsin)(0<<π),如果橢圓上存在不同的兩個(gè)交點(diǎn)P1、P2滿足,寫出求作點(diǎn)P1、P2的步驟,并求出使P1、P2存在的的取值范圍.

          查看答案和解析>>

          已知橢圓┍的方程為
          x2
          a2
          +
          y2
          b2
          =1(a>b>0),點(diǎn)P的坐標(biāo)為(-a,b).
          (1)若直角坐標(biāo)平面上的點(diǎn)M、A(0,-b),B(a,0)滿足
          PM
          =
          1
          2
          PA
          +
          PB
          ),求點(diǎn)M的坐標(biāo);
          (2)設(shè)直線l1:y=k1x+p交橢圓┍于C、D兩點(diǎn),交直線l2:y=k2x于點(diǎn)E.若k1•k2=-
          b2
          a2
          ,證明:E為CD的中點(diǎn);
          (3)對于橢圓┍上的點(diǎn)Q(a cosθ,b sinθ)(0<θ<π),如果橢圓┍上存在不同的兩個(gè)交點(diǎn)P1、P2滿足
          PP1
          +
          PP2
          =
          PQ
          ,寫出求作點(diǎn)P1、P2的步驟,并求出使P1、P2存在的θ的取值范圍.

          查看答案和解析>>

          設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,離心率為 , 在軸負(fù)半軸上有一點(diǎn),且

          (1)若過三點(diǎn)的圓 恰好與直線相切,求橢圓C的方程;

          (2)在(1)的條件下,過右焦點(diǎn)作斜率為的直線與橢圓C交于兩點(diǎn),在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說明理由.

           

          查看答案和解析>>

          設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,離心率為,在軸負(fù)半軸上有一點(diǎn),且

          (Ⅰ)若過三點(diǎn)的圓恰好與直線相切,求橢圓C的方程;

          (Ⅱ)在(Ⅰ)的條件下,過右焦點(diǎn)作斜率為的直線與橢圓C交于兩點(diǎn),在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍;如果不存在,說明理由.

           

          查看答案和解析>>


          同步練習(xí)冊答案