日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅱ)設(shè)Q是橢圓上的一點(diǎn).且過點(diǎn)F.Q的直線與y軸交于點(diǎn)M. 若.求直線的斜率. 查看更多

           

          題目列表(包括答案和解析)

          已知橢圓的中心在原點(diǎn),離心率為,一個(gè)焦點(diǎn)是F(-m,0)(m是大于0的常數(shù))。
          (1)求橢圓的方程;
          (2)設(shè)Q是橢圓上的一點(diǎn),且過點(diǎn)F、Q的直線l與y軸交于點(diǎn)M,若,求直線l的斜率。

          查看答案和解析>>

          已知橢圓的中心在原點(diǎn),離心率為,一個(gè)焦點(diǎn)是F(-m,0)(m是大于0的常數(shù)).(1)求橢圓的方程;(2)設(shè)Q是橢圓上的一點(diǎn),且過點(diǎn)F、Q的直線l與y交于點(diǎn)M,若||=2||,求直線l的斜率.

          查看答案和解析>>

          已知橢圓的中心在原點(diǎn),離心率為,一個(gè)焦點(diǎn)是F(-m,0)(m是大于0的常數(shù)).

          (1)求橢圓的方程;

          (2)設(shè)Q是橢圓上的一點(diǎn),且過點(diǎn)F、Q的直線l與y軸交于點(diǎn)M.若||=2||,求直線l的斜率.

          查看答案和解析>>

           

          設(shè)、分別是橢圓的左.右焦點(diǎn).

             (1)若是該橢圓上的一個(gè)動(dòng)點(diǎn),求的取值范圍;

             (2)設(shè)過定點(diǎn)Q(0,2)的直線與橢圓交于不同的兩點(diǎn)M.N,且∠為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.

             (3)設(shè)是它的兩個(gè)頂點(diǎn),直線AB相交于點(diǎn)D,與橢圓相交于EF兩點(diǎn).求四邊形面積的最大值.

           

           

           

           

           

           

           

          查看答案和解析>>

          設(shè)橢圓的左右焦點(diǎn)分別為F1、F2A是橢圓C上的一點(diǎn),且,坐標(biāo)原點(diǎn)O到直線AF1的距離為
          (1)求橢圓C的方程;
          (2)設(shè)Q是橢圓C上的一點(diǎn),過點(diǎn)Q的直線l交x軸于點(diǎn)F(-1,0),交y軸于點(diǎn)M,若|MQ|=2|QF|,求直線l的斜率.

          查看答案和解析>>

          一、選擇題:本大題共12小題,每小題5分,共60分。

          題號

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          11

          12

          答案

          D

          B

          A

          C

          B

          C

          B

          C

          C

          A

          A

          D

          二、填空題:本大題共4小題,每小題4分,共16分

          13、 -1    14、   24/5   15、 16/3     16、 

          解:由 得 P ( 1,-1)

             據(jù)題意,直線l與直線垂直,故l斜率

             ∴ 直線l方程為   即 .      

          解:連結(jié)PO,得

          當(dāng)PO通過圓心時(shí)有最大值和最小值

          解:設(shè)生產(chǎn)甲、乙兩種肥料各車皮,利潤總額為元,那么

          畫圖得當(dāng)時(shí)總額的最大值為30000

          解:(1)

          (2)或0

          解:(1)設(shè)A(x1,y1),B(x2,y2),AB的方程為y-1=k(x-2) 即y=kx+1-2k①

            ∵離心率e=∴橢圓方程可化為

          將①代入②得(1+2k2)x2+4(1-2k)?kx+2(1-2k)2-2b2=0

          ∵x1+x2=    ∴k=-1

          ∴x1x2=  又  ∴

             ∴b2=8     ∴

          (2)設(shè)(不妨設(shè)m<n)則由第二定義知

              或

                  

           

          解:由已知得 A (-1, 0 )、B ( 1, 0 ),

             設(shè) P ( x, y ),  C ( x0, y0 ) ,  則 D (x0, -y0 ),

             由A、C、P三點(diǎn)共線得                    ①

             由D、B、P三點(diǎn)共線得                    ②

          ①×② 得                              ③

          又 x02 + y02 = 1,   ∴ y02 = 1-x02   代入③得  x2-y2 = 1,

          即點(diǎn)P在雙曲線x2-y2 = 1上, 故由雙曲線定義知,存在兩個(gè)定點(diǎn)E (-, 0 )、

          F (, 0 )(即此雙曲線的焦點(diǎn)),使 | | PE |-| PF | | = 2  (即此雙曲線的實(shí)軸長) 為定值.

           

           


          同步練習(xí)冊答案