日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅱ)設(shè)直線:與橢圓相交于.不同兩點(diǎn).經(jīng)過(guò)線段上點(diǎn)的直線與軸相交于點(diǎn).且有..試求面積的最大值. 查看更多

           

          題目列表(包括答案和解析)

          (13分)設(shè)直線與橢圓相交于、兩個(gè)不同的點(diǎn),與軸相交于點(diǎn)。

          (1)證明:

          (2)若是橢圓的一個(gè)焦點(diǎn),且,求橢圓的方程。

          查看答案和解析>>

          設(shè)直線與橢圓相交于AB兩個(gè)不同的點(diǎn),與x軸相交于點(diǎn)C,記O為坐標(biāo)原點(diǎn).

             (1)證明:;

             (2)若的面積取得最大值時(shí)的橢圓方程.

          查看答案和解析>>

          設(shè)直線與橢圓相交于A、B兩個(gè)不同的點(diǎn),與x軸相交于點(diǎn)C,記O為坐標(biāo)原點(diǎn).
          (1)證明:;
          (2)若的面積取得最大值時(shí)的橢圓方程.

          查看答案和解析>>

          設(shè)直線與橢圓相交于AB兩個(gè)不同的點(diǎn),與x軸相交于點(diǎn)C,記O為坐標(biāo)原點(diǎn).

             (I)證明:

             (II)若的面積取得最大值時(shí)的橢圓方程.

          查看答案和解析>>

          設(shè)直線與橢圓相交于A、B兩個(gè)不同的點(diǎn),與x軸相交于點(diǎn)F.

             (I)證明:

             (II)若F是橢圓的一個(gè)焦點(diǎn),且,求橢圓的方程.

          查看答案和解析>>

          一、選擇題(每小題5分,共60分)

          題號(hào)

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          11

          12

          答案

          C

          B

          A

          B

          C

          D

          A

          D

          C

          C

          D

          B

          二、填空題(每小題5分,共20分)

          13、(1,2); 14、20; 15、21;16、

          三、解答題

          17、解:(Ⅰ)當(dāng)時(shí),有,又,所以 ……1分

          當(dāng)時(shí),

                     =

                   

                   所以,且當(dāng)時(shí),  ……3分

          ,因此數(shù)列{}是以1為首項(xiàng)

          且公差為2的等差數(shù)列,所以  ……2分

          (Ⅱ)證明:(1)當(dāng)時(shí),,關(guān)系成立 ……1分

           (2)假設(shè)當(dāng)時(shí),關(guān)系成立,即,則

             ……1分  那么

             ,即當(dāng)時(shí)關(guān)系也成立

          ……3分  根據(jù)(1)和(2)知,關(guān)系式對(duì)任意N*都成立  ……1分

          18、解:(Ⅰ)如圖,以C為原點(diǎn),CA,CB,CC1所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系,則,,

          ,  ……1分

          設(shè),則,,

          即AM⊥BC,又因?yàn)?sub>,且

          所以 AM^平面  ……3分

          (Ⅱ),因?yàn)?sub>,所以,得,

          ,可得平面的一個(gè)法向量為=  ……3分

          ,設(shè)平面的一個(gè)法向量為

          ,得,,令,得平面的一個(gè)法向量為=  ……3分設(shè)平面ABM與平面AB1C1所夾銳角為,

            ……2分

          19、解:(Ⅰ)隨機(jī)變量甲、乙兩名運(yùn)動(dòng)員選擇的泳道相隔數(shù)X的分布列為:

          X

          0

          1

          2

          3

          4

          5

          6

               ……6分

          泳道相隔數(shù)X的期望為:

          E(X)= ……2分

          (Ⅱ)  ……4分

          20、解:(Ⅰ)由  ……2分

          可得直線的方程為,于是,

          ,,所以橢圓的方程為  ……2分

          (Ⅱ)設(shè),由方程組

                所以有,,且,即 ……2分

              

                      ……2分

               因?yàn)?sub>,所以,又,所以是線段的中點(diǎn),

               點(diǎn)的坐標(biāo)為,即的坐標(biāo)是,因此

               直線的方程為,得點(diǎn)的坐標(biāo)為(0,),

               所以   ……2分

              因此

              所以當(dāng),即時(shí),取得最大值,最大值為 ……2分

          21、解:(Ⅰ)

                               ……2分

          ,則為R上的單調(diào)遞增函數(shù);

          ,的解為的解為,

          此時(shí)在區(qū)間單調(diào)遞增,在區(qū)間單調(diào)遞減;

          ,的解為,的解為,

          此時(shí)在區(qū)間單調(diào)遞增,在區(qū)間單調(diào)遞減……3分

          (Ⅱ)當(dāng)時(shí),,

          因?yàn)?sub>,所以點(diǎn)(0,)不在曲線上,設(shè)過(guò)點(diǎn)的直線與曲線相切于點(diǎn),則切線方程為,所以有

          ,得……2分 令

          ,

          ,得,可得在區(qū)間單調(diào)遞增,在區(qū)間單調(diào)遞減,所以時(shí)取極大值

          時(shí)取極小值,在時(shí)取極大值,又

          所以的最大值 ……3分 

          如圖,過(guò)點(diǎn)(0,)有且只有一條直線與曲線

          相切等價(jià)于直線與曲線

          有且只有一個(gè)交點(diǎn),又當(dāng)時(shí),,所以  ……2分

          22、(Ⅰ)證明:因?yàn)锳B為⊙O直徑,

          所以 ∠ACB=90°,即 AC⊥BC,

          因?yàn)镈是弧的中點(diǎn),由垂徑定理

          得OD⊥BC,因此OD∥AC  ……3分

          又因?yàn)辄c(diǎn)O為AB的中點(diǎn),所以點(diǎn)E為

          BC的中點(diǎn),所以O(shè)E=AC  ……2分

          (Ⅱ)證明:連結(jié)CD,因?yàn)镻C是⊙O的切線,所以∠PCD=∠CAP,又∠P是公共角,所以 △PCD∽△PAC.得,得 ……3分

          因?yàn)镈是弧的中點(diǎn),所以,因此   ……2分

          23、解:(Ⅰ)曲線上的動(dòng)點(diǎn)的坐標(biāo)為(,),坐標(biāo)原點(diǎn)(0,0),

               設(shè)P的坐標(biāo)為(,),則由中點(diǎn)坐標(biāo)公式得,,所以點(diǎn)P 的坐標(biāo)為(,)……3分

                因此點(diǎn)的軌跡的參數(shù)方程為為參數(shù),且),

          消去參數(shù)得點(diǎn)軌跡的直角坐標(biāo)方程為 ……2分

          (Ⅱ)由直角坐標(biāo)與極坐標(biāo)關(guān)系得直線的直角坐標(biāo)方程為

            ……2分 又由(Ⅰ)知點(diǎn)的軌跡為圓心在原點(diǎn)半徑為2的圓,

          因?yàn)樵c(diǎn)(0,0)到直線的距離為

          所以點(diǎn)到直線距離的最大值  ……3分

          24、解:(Ⅰ)由題意得,即  得 ……2分

               因?yàn)?sub> 

          所以的取值范圍是[0,6]   ……3分

          (Ⅱ)

          因?yàn)閷?duì)于,由絕對(duì)值的三角不等式得

             ……3分

          于是有,得,即的取值范圍是  ……2分

           

           

           

           

           

           

           


          同步練習(xí)冊(cè)答案