日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓的離心率為.直線:與以原點(diǎn)為圓心.以橢圓C1的短半軸長為半徑的圓相切.(1)求橢圓C1的方程, 查看更多

           

          題目列表(包括答案和解析)

          已知橢圓的離心率為,直線與以原點(diǎn)為圓心、橢圓的短半軸長為半徑的圓相切.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn)為,直線過點(diǎn)且垂直于橢圓的長軸,動直線垂直于點(diǎn)P,線段的垂直平分線交于點(diǎn)M,求動點(diǎn)M的軌跡的方程;

          (Ⅲ)過橢圓的焦點(diǎn)作直線與曲線交于A、B兩點(diǎn),當(dāng)的斜率為時,直線 上是否存在點(diǎn)M,使若存在,求出M的坐標(biāo),若不存在,說明理由

          查看答案和解析>>

          已知橢圓的離心率為,直線:與以原點(diǎn)為圓心、以橢圓的短半軸長為半徑的圓相切.

             (I)求橢圓的方程;

             (II)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線過點(diǎn)且垂直于橢圓的長軸,動直線垂直于點(diǎn),線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;

             (III)設(shè)軸交于點(diǎn),不同的兩點(diǎn)上,且滿足的取值范圍.

          查看答案和解析>>

          已知橢圓的離心率為,直線:與以原點(diǎn)為圓心、以橢圓的短半軸長為半徑的圓相切.

             (I)求橢圓的方程;

             (II)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線過點(diǎn)且垂直于橢圓的長軸,動直線垂直于點(diǎn),線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;

             (III)設(shè)軸交于點(diǎn),不同的兩點(diǎn)上,且滿足的取值范圍.

          查看答案和解析>>

          已知橢圓的離心率為,直線與以原點(diǎn)為圓心、以橢圓的短半軸長為半徑的圓相切.

          (1)求橢圓的方程;

          (2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn)為,直線過點(diǎn),且垂直于橢圓的長軸,動直線垂直于,垂足為點(diǎn),線段的垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;

          (3)設(shè)軸交于點(diǎn),不同的兩點(diǎn)上(也不重合),且滿足,求的取值范圍.

           

          查看答案和解析>>

          已知橢圓的離心率為,直線:與以原點(diǎn)為圓心、以橢圓的短半軸長為半徑的圓相切.

          (1)求橢圓的方程;

          (2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線過點(diǎn)且垂直于橢圓的長軸,動直線

          于點(diǎn),線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;

          (3)當(dāng)P不在軸上時,在曲線上是否存在兩個不同點(diǎn)C、D關(guān)于對稱,若存在,

          求出的斜率范圍,若不存在,說明理由。

           

          查看答案和解析>>

          一、選擇題:本大題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。

          題號

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          11

          12

          答案

          B

          B

          D

          D

          C

          A

          C

          B

          A

          C

          C

          C

          二、填空題:本大題共4小題,每小題4分,共16分。把答案填在題中橫線上。

          13.13     14.       15.2           16.1005

          三、解答題:本大題共6小題,共74分。解答應(yīng)寫出文字說明,證明過程或演算步驟。

          17.(本小題滿分12分)

          解(I)

                

            (Ⅱ)由

                  

          18.(本小題滿分12分)

          解(I)記事件A;射手甲剩下3顆子彈,

                

          (Ⅱ)記事件甲命中1次10環(huán),乙命中兩次10環(huán),事件;甲命中2次10環(huán),乙命中1次10環(huán),則四次射擊中恰有三次命中10環(huán)為事件

          (Ⅲ)的取值分別為16,17,18,19,20,

               

          19.(本題滿分12分)

          證(Ⅰ)因為側(cè)面,故

           在中,   由余弦定理有

            故有 

            而     且平面

               

          (Ⅱ)由

          從而  且

           不妨設(shè)  ,則,則

            則

          中有   從而(舍負(fù))

          的中點(diǎn)時,

           法二:以為原點(diǎn)軸,設(shè),則       由得    即

                

                化簡整理得       或

               當(dāng)重合不滿足題意

               當(dāng)的中點(diǎn)

               故的中點(diǎn)使

           (Ⅲ)取的中點(diǎn)的中點(diǎn),的中點(diǎn),的中點(diǎn)

           連,連,連

           連,且為矩形,

             故為所求二面角的平面角

          中,

          法二:由已知, 所以二面角的平面角的大小為向量的夾角

          因為  

           

          20.(本小題滿分12分)

          (1)由

                  切線的斜率切點(diǎn)坐標(biāo)(2,5+

                  所求切線方程為

             (2)若函數(shù)為上單調(diào)增函數(shù),

                  則上恒成立,即不等式上恒成立

                  也即上恒成立。

                  令上述問題等價于

                  而為在上的減函數(shù),

                  則于是為所求

          21.(本小題滿分12分)

          解:(1)

                  ∵直線l:x-y+2=0與圓x2+y2=b2相切,

          =b,∴b=,b2=2,∴=3.                                                    

          ∴橢圓C1的方程是

          (2)∵M(jìn)P=MF,∴動點(diǎn)M到定直線l1:x=-1的距離等于它的定點(diǎn)F2(1,0)的距離,

          ∴動點(diǎn)M的軌跡是以l1為準(zhǔn)線,F(xiàn)2為焦點(diǎn)的拋物線,∴點(diǎn)M的軌跡C2的方程為

          (3)Q(0,0),設(shè),

          ,

          得  ,

          化簡得,

          當(dāng)且僅當(dāng)時等號成立,

          ,又∵y­22≥64,

          ∴當(dāng).    故的取值范圍是.

          22.(本小題滿分14分)

          解(I)由題意,令

                

           (Ⅱ)

                

            (1)當(dāng)時,成立:

            (2)假設(shè)當(dāng)時命題成立,即

                 當(dāng)時,

                

           

           

           


          同步練習(xí)冊答案