日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓的離心率為,直線與以原點(diǎn)為圓心、以橢圓的短半軸長為半徑的圓相切.

          (1)求橢圓的方程;

          (2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn)為,直線過點(diǎn),且垂直于橢圓的長軸,動(dòng)直線垂直于,垂足為點(diǎn),線段的垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;

          (3)設(shè)軸交于點(diǎn),不同的兩點(diǎn)上(也不重合),且滿足,求的取值范圍.

           

          【答案】

          (1);(2);(3).

          【解析】

          試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、平面內(nèi)兩點(diǎn)間的距離公式等基礎(chǔ)知識(shí),考查用代數(shù)方法研究圓錐曲線的性質(zhì),以及數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查運(yùn)算求解能力、綜合分析和解決問題的能力.第一問,利用直線與圓相切列出距離公式,求出橢圓中的基本量,比較簡單;第二問,考查拋物線的定義,本問主要考查理解題意的能力;第三問,與向量相結(jié)合,再加上基本不等式求最值.

          試題解析:(1)由直線與圓相切,得,即.

          ,得,所以,所以橢圓的方程是.  (4分)

          (2)由條件,知,即動(dòng)點(diǎn)到定點(diǎn)的距離等于它到直線的距離,由拋物線的定義得點(diǎn)的軌跡的方程是.(6分)

          (3)由(2)知,設(shè)

          ,得,

          ,∴

          ,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.

          ,

          ,∴當(dāng),即時(shí),.

          的取值范圍是.(12分)

          考點(diǎn):1.橢圓的標(biāo)準(zhǔn)方程;2.點(diǎn)到直線的距離公式;3.拋物線的定義;4.基本不等式.

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓的離心率為e,兩焦點(diǎn)分別為F1、F2,拋物線C以F1為頂點(diǎn)、F2為焦點(diǎn),點(diǎn)P為拋物線和橢圓的一個(gè)交點(diǎn),若e|PF2|=|PF1|,則e的值為( 。
          A、
          1
          2
          B、
          2
          2
          C、
          3
          3
          D、以上均不對(duì)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓的離心率為
          1
          2
          ,焦點(diǎn)是(-3,0),(3,0),則橢圓方程為( 。
          A、
          x2
          36
          +
          y2
          27
          =1
          B、
          x2
          36
          -
          y2
          27
          =1
          C、
          x2
          27
          +
          y2
          36
          =1
          D、
          x2
          27
          -
          y2
          36
          =1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在由圓O:x2+y2=1和橢圓C:
          x2
          a2
          +y2
          =1(a>1)構(gòu)成的“眼形”結(jié)構(gòu)中,已知橢圓的離心率為
          6
          3
          ,直線l與圓O相切于點(diǎn)M,與橢圓C相交于兩點(diǎn)A,B.
          (1)求橢圓C的方程;
          (2)是否存在直線l,使得
          OA
          OB
          =
          1
          2
          OM
          2
          ,若存在,求此時(shí)直線l的方程;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)已知橢圓的離心率為
          2
          2
          ,準(zhǔn)線方程為x=±8,求這個(gè)橢圓的標(biāo)準(zhǔn)方程;
          (2)假設(shè)你家訂了一份報(bào)紙,送報(bào)人可能在早上6:30-7:30之間把報(bào)紙送到你家,你父親離開家去工作的時(shí)間在早上7:00-8:00之間,請(qǐng)你求出父親在離開家前能得到報(bào)紙(稱為事件A)的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,A,B是橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左、右頂點(diǎn),M是橢圓上異于A,B的任意一點(diǎn),已知橢圓的離心率為e,右準(zhǔn)線l的方程為x=m.
          (1)若e=
          1
          2
          ,m=4,求橢圓C的方程;
          (2)設(shè)直線AM交l于點(diǎn)P,以MP為直徑的圓交MB于Q,若直線PQ恰過原點(diǎn),求e.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案