日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. . ----------8分由題意可知 查看更多

           

          題目列表(包括答案和解析)

          (理)(本小題8分)如圖,在四棱錐中,底面是矩形, 平面,,,以的中點為球心、為直徑的球面交于點.

          (1) 求證:平面平面;

          (2)求點到平面的距離.  

          證明:(1)由題意,在以為直徑的球面上,則

          平面,則

          ,平面,

          ,

          平面,

          ∴平面平面.       (3分)

          (2)∵的中點,則點到平面的距離等于點到平面的距離的一半,由(1)知,平面,則線段的長就是點到平面的距離

           

               ∵在中,

               ∴的中點,                 (7分)

               則點到平面的距離為                 (8分)

              (其它方法可參照上述評分標(biāo)準(zhǔn)給分)

           

           

          查看答案和解析>>

          (理)(本小題8分)如圖,在四棱錐中,底面是矩形, 平面,,以的中點為球心為直徑的球面交于點.
          (1) 求證:平面平面;
          (2)求點到平面的距離.  
          證明:(1)由題意,在以為直徑的球面上,則

          平面,則
          ,平面
          ,
          平面
          ∴平面平面.      (3分)
          (2)∵的中點,則點到平面的距離等于點到平面的距離的一半,由(1)知,平面,則線段的長就是點到平面的距離
           
          ∵在中,
          的中點,                (7分)
          則點到平面的距離為                (8分)
          (其它方法可參照上述評分標(biāo)準(zhǔn)給分)

          查看答案和解析>>

          已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

          (1)求數(shù)列的通項公式

          (2)若不等式對任意恒成立,試猜想出實數(shù)的最小值,并證明.

          【解析】本試題主要考查了數(shù)列的通項公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問中,利用設(shè)數(shù)列公差為,

          由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當(dāng)時,;當(dāng)時,;而,所以猜想,的最小值為然后加以證明即可。

          解:(1)設(shè)數(shù)列公差為,由題意可知,即

          解得(舍去).      …………3分

          所以,.        …………6分

          (2)不等式等價于,

          當(dāng)時,;當(dāng)時,

          ,所以猜想,的最小值為.     …………8分

          下證不等式對任意恒成立.

          方法一:數(shù)學(xué)歸納法.

          當(dāng)時,,成立.

          假設(shè)當(dāng)時,不等式成立,

          當(dāng)時,, …………10分

          只要證  ,只要證  ,

          只要證  ,只要證  ,

          只要證  ,顯然成立.所以,對任意,不等式恒成立.…14分

          方法二:單調(diào)性證明.

          要證 

          只要證  ,  

          設(shè)數(shù)列的通項公式,        …………10分

          ,    …………12分

          所以對,都有,可知數(shù)列為單調(diào)遞減數(shù)列.

          ,所以恒成立,

          的最小值為

           

          查看答案和解析>>

          設(shè)函數(shù)f(x)=lnxgx)=ax+,函數(shù)f(x)的圖像與x軸的交點也在函數(shù)g(x)的圖像上,且在此點處f(x)與g(x)有公切線.[來源:學(xué)?啤>W(wǎng)]

          (Ⅰ)求a、b的值; 

          (Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來源:學(xué),科,網(wǎng)Z,X,X,K]

          【解析】第一問解:因為f(x)=lnx,gx)=ax+

          則其導(dǎo)數(shù)為

          由題意得,

          第二問,由(I)可知,令。

          ,  …………8分

          是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

          ∴當(dāng)時,,有;當(dāng)時,,有;當(dāng)x=1時,,有

          解:因為f(x)=lnx,gx)=ax+

          則其導(dǎo)數(shù)為

          由題意得,

          (11)由(I)可知,令

          ,  …………8分

          是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

          ∴當(dāng)時,,有;當(dāng)時,,有;當(dāng)x=1時,,有

           

          查看答案和解析>>

          已知m>1,直線,橢圓C:,分別為橢圓C的左、右焦點.

          (Ⅰ)當(dāng)直線過右焦點時,求直線的方程;

          (Ⅱ)設(shè)直線與橢圓C交于A、B兩點,△A、△B的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.[

          【解析】第一問中因為直線經(jīng)過點,0),所以,得.又因為m>1,所以,故直線的方程為

          第二問中設(shè),由,消去x,得,

          則由,知<8,且有

          由題意知O為的中點.由可知從而,設(shè)M是GH的中點,則M().

          由題意可知,2|MO|<|GH|,得到范圍

           

          查看答案和解析>>


          同步練習(xí)冊答案