日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解:(Ⅰ)本小題只要能建立一個(gè)正確的數(shù)學(xué)模型即可給分(例如根據(jù)兩點(diǎn)得出直線方程等).下面利用excel給出幾個(gè)模型.供參考:(1)直線型: 查看更多

           

          題目列表(包括答案和解析)

          (2006•黃浦區(qū)二模)設(shè)a為正數(shù),直角坐標(biāo)平面內(nèi)的點(diǎn)集A={(x,y)|x,y,a-x-y是三角形的三邊長(zhǎng)}.
          (1)畫(huà)出A所表示的平面區(qū)域;
          (2)在平面直角坐標(biāo)系中,規(guī)定a∈Z,且y∈Z時(shí),(x,y)稱為格點(diǎn),當(dāng)a=8時(shí),A內(nèi)有幾個(gè)格點(diǎn)(本小題只要直接寫(xiě)出結(jié)果即可);
          (3)點(diǎn)集A連同它的邊界構(gòu)成的區(qū)域記為
          .
          A
          ,若圓{(x,y)|(x-p)2+(x-q)2=r2}⊆
          .
          A
          (r>0)
          ,求r的最大值.

          查看答案和解析>>

          設(shè)a為正數(shù),直角坐標(biāo)平面內(nèi)的點(diǎn)集A={(x,y)|x,y,a-x-y是三角形的三邊長(zhǎng)}.
          (1)畫(huà)出A所表示的平面區(qū)域;
          (2)在平面直角坐標(biāo)系中,規(guī)定a∈Z,且y∈Z時(shí),(x,y)稱為格點(diǎn),當(dāng)a=8時(shí),A內(nèi)有幾個(gè)格點(diǎn)(本小題只要直接寫(xiě)出結(jié)果即可);
          (3)點(diǎn)集A連同它的邊界構(gòu)成的區(qū)域記為數(shù)學(xué)公式,若圓數(shù)學(xué)公式,求r的最大值.

          查看答案和解析>>

          設(shè)a為正數(shù),直角坐標(biāo)平面內(nèi)的點(diǎn)集A={(x,y)|x,y,a-x-y是三角形的三邊長(zhǎng)}.
          (1)畫(huà)出A所表示的平面區(qū)域;
          (2)在平面直角坐標(biāo)系中,規(guī)定a∈Z,且y∈Z時(shí),(x,y)稱為格點(diǎn),當(dāng)a=8時(shí),A內(nèi)有幾個(gè)格點(diǎn)(本小題只要直接寫(xiě)出結(jié)果即可);
          (3)點(diǎn)集A連同它的邊界構(gòu)成的區(qū)域記為,若圓,求r的最大值.

          查看答案和解析>>

          設(shè)點(diǎn)是拋物線的焦點(diǎn),是拋物線上的個(gè)不同的點(diǎn)().

          (1) 當(dāng)時(shí),試寫(xiě)出拋物線上的三個(gè)定點(diǎn)、的坐標(biāo),從而使得

          ;

          (2)當(dāng)時(shí),若,

          求證:

          (3) 當(dāng)時(shí),某同學(xué)對(duì)(2)的逆命題,即:

          “若,則.”

          開(kāi)展了研究并發(fā)現(xiàn)其為假命題.

          請(qǐng)你就此從以下三個(gè)研究方向中任選一個(gè)開(kāi)展研究:

          ① 試構(gòu)造一個(gè)說(shuō)明該逆命題確實(shí)是假命題的反例(本研究方向最高得4分);

          ② 對(duì)任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說(shuō)明你的理由(本研究方向最高得8分);

          ③ 如果補(bǔ)充一個(gè)條件后能使該逆命題為真,請(qǐng)寫(xiě)出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說(shuō)明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

          【評(píng)分說(shuō)明】本小題若填空不止一個(gè)研究方向,則以實(shí)得分最高的一個(gè)研究方向的得分作為本小題的最終得分.

          【解析】第一問(wèn)利用拋物線的焦點(diǎn)為,設(shè)

          分別過(guò)作拋物線的準(zhǔn)線的垂線,垂足分別為.

          由拋物線定義得到

          第二問(wèn)設(shè),分別過(guò)作拋物線的準(zhǔn)線垂線,垂足分別為.

          由拋物線定義得

          第三問(wèn)中①取時(shí),拋物線的焦點(diǎn)為

          設(shè),分別過(guò)作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

          ,

          ,不妨取;;;

          解:(1)拋物線的焦點(diǎn)為,設(shè)

          分別過(guò)作拋物線的準(zhǔn)線的垂線,垂足分別為.由拋物線定義得

           

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image010.png">,所以,

          故可取滿足條件.

          (2)設(shè),分別過(guò)作拋物線的準(zhǔn)線垂線,垂足分別為.

          由拋物線定義得

             又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image017.png">

          ;

          所以.

          (3) ①取時(shí),拋物線的焦點(diǎn)為,

          設(shè)分別過(guò)作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

          ,

          ,不妨取;;,

          ,

          .

          ,,是一個(gè)當(dāng)時(shí),該逆命題的一個(gè)反例.(反例不唯一)

          ② 設(shè),分別過(guò)

          拋物線的準(zhǔn)線的垂線,垂足分別為

          及拋物線的定義得

          ,即.

          因?yàn)樯鲜霰磉_(dá)式與點(diǎn)的縱坐標(biāo)無(wú)關(guān),所以只要將這點(diǎn)都取在軸的上方,則它們的縱坐標(biāo)都大于零,則

          ,

          ,所以.

          (說(shuō)明:本質(zhì)上只需構(gòu)造滿足條件且的一組個(gè)不同的點(diǎn),均為反例.)

          ③ 補(bǔ)充條件1:“點(diǎn)的縱坐標(biāo))滿足 ”,即:

          “當(dāng)時(shí),若,且點(diǎn)的縱坐標(biāo))滿足,則”.此命題為真.事實(shí)上,設(shè)

          分別過(guò)作拋物線準(zhǔn)線的垂線,垂足分別為,由,

          及拋物線的定義得,即,則

          ,

          又由,所以,故命題為真.

          補(bǔ)充條件2:“點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對(duì)稱”,即:

          “當(dāng)時(shí),若,且點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對(duì)稱,則”.此命題為真.(證略)

           

          查看答案和解析>>

          精英家教網(wǎng)A.選修4-1:幾何證明選講
          如圖,圓O1與圓O2內(nèi)切于點(diǎn)A,其半徑分別為r1與r2(r1>r2 ).圓O1的弦AB交圓O2于點(diǎn)C ( O1不在AB上).求證:AB:AC為定值.
          B.選修4-2:矩陣與變換
          已知矩陣A=
          11
          21
          ,向量β=
          1
          2
          .求向量
          α
          ,使得A2
          α
          =
          β

          C.選修4-4:坐標(biāo)系與參數(shù)方程
          在平面直角坐標(biāo)系xOy中,求過(guò)橢圓
          x=5cosφ
          y=3sinφ
          (φ為參數(shù))的右焦點(diǎn),且與直線
          x=4-2t
          y=3-t
          (t為參數(shù))平行的直線的普通方程.
          D.選修4-5:不等式選講(本小題滿分10分)
          解不等式:x+|2x-1|<3.

          查看答案和解析>>


          同步練習(xí)冊(cè)答案