日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)A.選修4-1:幾何證明選講
          如圖,圓O1與圓O2內(nèi)切于點(diǎn)A,其半徑分別為r1與r2(r1>r2 ).圓O1的弦AB交圓O2于點(diǎn)C ( O1不在AB上).求證:AB:AC為定值.
          B.選修4-2:矩陣與變換
          已知矩陣A=
          11
          21
          ,向量β=
          1
          2
          .求向量
          α
          ,使得A2
          α
          =
          β

          C.選修4-4:坐標(biāo)系與參數(shù)方程
          在平面直角坐標(biāo)系xOy中,求過(guò)橢圓
          x=5cosφ
          y=3sinφ
          (φ為參數(shù))的右焦點(diǎn),且與直線
          x=4-2t
          y=3-t
          (t為參數(shù))平行的直線的普通方程.
          D.選修4-5:不等式選講(本小題滿分10分)
          解不等式:x+|2x-1|<3.
          分析:A、如圖,利用 EC∥DB,AB:AC=AD:AE=2r1:2r2,證出結(jié)論.
          B、設(shè)向量
          α
          =
          .
          x
          y
          .
          ,由 A2
          α
          =
          β
          ,利用矩陣的運(yùn)算法則,用待定系數(shù)法可得x 和 y 的值,從而求得向量
          α

          C、把橢圓的參數(shù)方程化為普通方程,求出右焦點(diǎn)的坐標(biāo),把直線參數(shù)方程化為普通方程,求出斜率,用點(diǎn)斜式
          求得所求直線的方程.
          D、原不等式可化為
          x+2x-1<3
          2x-1≥0
          ,或
          x-(2x-1)<3
          2x-1<0
          ,分別解出這兩個(gè)不等式組的解集,
          再把解集取并集.
          解答:解:A、如圖:連接AO1并延長(zhǎng),交兩圓于D,E,則O2在AD上,根據(jù)直徑對(duì)的圓周角等于90°可得,∠ACE=∠ABD=90°,
          ∴EC∥DB,∴AB:AC=AD:AE=2r1:2r2=r1:r2  為定值.
          精英家教網(wǎng)
          B、A2=
          .
          11
          21
          .
           
          .
          11
          21
          .
          =
          .
          32
          43
          .
          ,設(shè)向量
          α
          =
          .
          x
          y
          .
          ,由 A2
          α
          =
          β
           可得
          .
          32
          43
          .
          .
          x
          y
          .
          =
          .
          1
          2
          .
          ,∴
          3x=2y=1
          4x+3y=2
          ,解得 x=-1,y=2,
          ∴向量
          α
          =
          .
          1
          2
          .

          C、橢圓
          x=5cosφ
          y=3sinφ
          (φ為參數(shù))的普通方程為
          x2
          25
          +
          y2
          9
          =1,右焦點(diǎn)為(4,0),
          直線
          x=4-2t
          y=3-t
          (t為參數(shù)) 即 x-2 y+2=0,斜率等于
          1
          2
          ,故所求的直線方程為
          y-0=
          1
          2
          (x-4),即 x-2 y-4=0.
          D、原不等式可化為 
          x+2x-1<3
          2x-1≥0
          ,或
          x-(2x-1)<3
          2x-1<0
          ,
          解得 
          1
          2
          ≤x<
          4
          3
          ,或-2<x<
          1
          2
          ,故不等式的解集為 {x|-2<x<
          4
          3
          }.
          點(diǎn)評(píng):本題考查圓與圓的位置關(guān)系,參數(shù)方程與普通方程的互化,矩陣的運(yùn)算法則,絕對(duì)值不等式的解法.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)A(選修4-1:幾何證明選講)
          如圖,AB是⊙O的直徑,C,F(xiàn)是⊙O上的兩點(diǎn),OC⊥AB,過(guò)點(diǎn)F作⊙O的切線FD交AB的延長(zhǎng)線于點(diǎn)D,連接CF交AB于點(diǎn)E.
          求證:DE2=DB•DA.
          B(選修4-2:矩陣與變換)
          求矩陣
          21
          12
          的特征值及對(duì)應(yīng)的特征向量.
          C(選修4-4:坐標(biāo)系與參數(shù)方程)
          已知曲線C的極坐標(biāo)方程是ρ=2sinθ,直線l的參數(shù)方程是
          x=-
          3
          5
          t+2
          y=
          4
          5
          t
          (t為參數(shù)).
          (Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
          (Ⅱ)設(shè)直線l與x軸的交點(diǎn)是M,N是曲線C上一動(dòng)點(diǎn),求MN的最大值.
          D(選修4-5:不等式選講)
          已知m>0,a,b∈R,求證:(
          a+mb
          1+m
          )2
          a2+mb2
          1+m

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          選做題:在A、B、C、D四小題中只能選做2題,每小題10分,共20分.解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.
          A.選修4-1:幾何證明選講
          如圖,PA切⊙O于點(diǎn)A,D為PA的中點(diǎn),過(guò)點(diǎn)D引割線交⊙O于B、C兩點(diǎn).求證:∠DPB=∠DCP.
          B.選修4-2:矩陣與變換
          設(shè)M=
          .
          10
          02
          .
          ,N=
          .
          1
          2
          0
          01
          .
          ,試求曲線y=sinx在矩陣MN變換下的曲線方程.
          C.選修4-4:坐標(biāo)系與參數(shù)方程
          在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=
          2
          cos(θ+
          π
          4
          )
          ,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
          x=1+
          4
          5
          t
          y=-1-
          3
          5
          t
          (t為參數(shù)),求直線l被圓C所截得的弦長(zhǎng).
          D.選修4-5:不等式選講
          解不等式:|2x+1|-|x-4|<2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          A)選修4-1:幾何證明選講
          如圖,⊙O的割線PAB交⊙O于A,B兩點(diǎn),割線PCD經(jīng)過(guò)圓心交⊙O于C,D兩點(diǎn),若PA=2,AB=4,PO=5,則⊙O的半徑長(zhǎng)為
          13
          13


          (B)選修4-4:坐標(biāo)系與參數(shù)方程
          參數(shù)方程
          x=
          1
          2
          (et+e-t)
          y=
          1
          2
          (et-e-t)
          中當(dāng)t為參數(shù)時(shí),化為普通方程為
          x2-y2=1(x≥1)
          x2-y2=1(x≥1)

          (C)選修4-5:不等式選講
          不等式|2-x|+|x+1|≤a對(duì)于任意x∈[0,5]恒成立的實(shí)數(shù)a的集合為
          {a|a≥9}
          {a|a≥9}

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          選做題在A、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分.
          請(qǐng)?jiān)诖鹁砑堉付▍^(qū)域內(nèi)作答.解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.
          A.選修4-1:幾何證明選講如圖,AD是∠BAC的平分線,⊙O過(guò)點(diǎn)A且與BC邊相切于點(diǎn)D,與AB,AC分別交于E,F(xiàn),求證:EF∥BC.
          B.選修4-2:矩陣與變換
          已知a,b∈R,若矩陣M=[
          -1
          b
          a
          3
          ]所對(duì)應(yīng)的變換把直線l:2x-y=3變換為自身,求a,b的值.
          C.選修4-4:坐標(biāo)系與參數(shù)方程將參數(shù)方程
          x=2(t+
          1
          t
          )
          y=4(t-
          1
          t
          )
          t為參數(shù))化為普通方程.
          D.選修4-5:已知a,b是正數(shù),求證(a+
          1
          b
          )(2b+
          1
          2a
          )≥92.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          從A,B,C,D四個(gè)中選做2個(gè)A.選修4-1(幾何證明選講)
          如圖,AB是半圓的直徑,C是AB延長(zhǎng)線上一點(diǎn),CD切半圓于點(diǎn)D,CD=2,DE⊥AB,垂足為E,且E是OB的中點(diǎn),求BC的長(zhǎng).
          B.選修4-2(矩陣與變換)
          將曲線xy=1繞坐標(biāo)原點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)45°,求所得曲線的方程.
          C.選修4-4(坐標(biāo)系與參數(shù)方程)
          求直線
          x=1+2t
          y=1-2t
          (t為參數(shù))被圓
          x=3cosa
          y=3sina
          (α為參數(shù))截得的弦長(zhǎng).
          D.選修4-5(不等式選講)
          已知x,y均為正數(shù),且x>y,求證:2x+
          1
          x2-2xy+y2
          ≥2y+3

          查看答案和解析>>

          同步練習(xí)冊(cè)答案