日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 9.已知橢圓方程是.橢圓左焦點(diǎn)為F1.O為坐標(biāo)原點(diǎn).A為橢圓上一點(diǎn).M在線段AF1上.且滿足.||=2.則A的橫坐標(biāo)是 查看更多

           

          題目列表(包括答案和解析)

           已知橢圓方程是,橢圓左焦點(diǎn)為F1O為坐標(biāo)原點(diǎn),A為橢圓上一點(diǎn),M在線段AF1上,且滿足,||=2,則A的橫坐標(biāo)是(    )

          A.          B.            C.          D.

           

          查看答案和解析>>

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率為
          2
          2
          ,其左、右焦點(diǎn)分別為F1、F2,點(diǎn)P是橢圓上一點(diǎn),且
          PF1
          PF2
          =0
          ,|OP|=1(O為坐標(biāo)原點(diǎn)).
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)過點(diǎn)S(0,-
          1
          3
          )
          且斜率為k的動(dòng)直線l交
          橢圓于A、B兩點(diǎn),在y軸上是否存在定點(diǎn)M,使以AB為直徑的圓恒過這個(gè)點(diǎn)?若存在,求出M的坐標(biāo),若不存在,說明理由.

          查看答案和解析>>

          已知橢圓C1
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,其中F2也是拋物線C2:y2=4x的焦點(diǎn),M是C1與C2在第一象限的交點(diǎn),且|MF2|=
          5
          3

          (1)求橢圓C1的方程;
          (2)已知菱形ABCD的頂點(diǎn)A,C在橢圓C1上,對角線BD所在的直線的斜率為1.
          ①當(dāng)直線BD過點(diǎn)(0,
          1
          7
          )時(shí),求直線AC的方程;
          ②當(dāng)∠ABC=60°時(shí),求菱形ABCD面積的最大值.

          查看答案和解析>>

          已知橢圓
          x2
          a2
          +
          y2
          b2
          =1
          上的點(diǎn)P到左、右兩焦點(diǎn)F1、F2的距離之和為2
          2
          ,離心率e=
          2
          2

          (I)求橢圓的方程;
          (II)過右焦點(diǎn)F2且不垂直于坐標(biāo)軸的直線l交橢圓于A,B兩點(diǎn),試問:險(xiǎn)段OF2上是否存在一點(diǎn)M,使得|MA|=|MB|?請作出并證明.

          查看答案和解析>>

          已知橢圓C的對稱中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,左右焦點(diǎn)分別為F1,F(xiàn)2,且|F1F2|=2
          5
          ,點(diǎn)(
          5
          ,
          4
          3
          )
          在該橢圓上.
          (1)求橢圓C的方程;
          (2)設(shè)橢圓C上的一點(diǎn)p在第一象限,且滿足PF1⊥PF2,⊙O的方程為x2+y2=4.求點(diǎn)p坐標(biāo),并判斷直線pF2與⊙O的位置關(guān)系;
          (3)設(shè)點(diǎn)A為橢圓的左頂點(diǎn),是否存在不同于點(diǎn)A的定點(diǎn)B,對于⊙O上任意一點(diǎn)M,都有
          MB
          MA
          為常數(shù),若存在,求所有滿足條件的點(diǎn)B的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          一、選擇題

          1.D  2.A  3.C  4.D  5.B  6.C  7.D  8.B  9.A  10.A

          二、填空題

          11.148  12.-4  13.  14.-6  15.①②③④

          三、解答題

          16.解:⑴

                                                                                                                           3分

          =1+1+2cos2x

          =2+2cos2x

          =4cos2x

          ∵x∈[0,]  ∴cosx≥0

          =2cosx                                                                                                    6分

          ⑵ f (x)=cos2x-?2cosx?sinx

                =cos2x-sin2x

                =2cos(2x+)                                                                                           8分

          ∵0≤x≤  ∴

            ∴

          ,當(dāng)x=時(shí)取得該最小值

           ,當(dāng)x=0時(shí)取得該最大值                                                                  12分

          17.由題意知,在甲盒中放一球概率為,在乙盒放一球的概率為                    3分

          ①當(dāng)n=3時(shí),x=3,y=0的概率為                                              6分

          ②|x-y|=2時(shí),有x=3,y=1或x=1,y=3

          它的概率為                                                                12分

          18.解:⑴證明:在正方形ABCD中,AB⊥BC

          又∵PB⊥BC  ∴BC⊥面PAB  ∴BC⊥PA

          同理CD⊥PA  ∴PA⊥面ABCD    4分

          ⑵在AD上取一點(diǎn)O使AO=AD,連接E,O,

          則EO∥PA,∴EO⊥面ABCD 過點(diǎn)O做

          OH⊥AC交AC于H點(diǎn),連接EH,則EH⊥AC,

          從而∠EHO為二面角E-AC-D的平面角                                                             6分

          在△PAD中,EO=AP=在△AHO中∠HAO=45°,

          ∴HO=AOsin45°=,∴tan∠EHO=

          ∴二面角E-AC-D等于arctan                                                                   8分

          ⑶當(dāng)F為BC中點(diǎn)時(shí),PF∥面EAC,理由如下:

          ∵AD∥2FC,∴,又由已知有,∴PF∥ES

          ∵PF面EAC,EC面EAC  ∴PF∥面EAC,

          即當(dāng)F為BC中點(diǎn)時(shí),PF∥面EAC                                                                         12分

          19.⑴f '(x)=3x2+2bx+c,由題知f '(1)=03+2b+c=0,

          f (1)=-11+b+c+2=-1

          ∴b=1,c=-5                                                                                                    3分

          f (x)=x3+x2-5x+2,f '(x)=3x2+2x-5

          f (x)在[-,1]為減函數(shù),f (x)在(1,+∞)為增函數(shù)

          ∴b=1,c=-5符合題意                                                                                      5分

          ⑵即方程:恰有三個(gè)不同的實(shí)解:

          x3+x2-5x+2=k(x≠0)

          即當(dāng)x≠0時(shí),f (x)的圖象與直線y=k恰有三個(gè)不同的交點(diǎn),

          由⑴知f (x)在為增函數(shù),

          f (x)在為減函數(shù),f (x)在(1,+∞)為增函數(shù),

          ,f (1)=-1,f (2)=2

          且k≠2                                                                                               12分

          20.⑴∵

                                                                                                   3分

          ∴{an-3n}是以首項(xiàng)為a1-3=2,公比為-2的等比數(shù)列

          ∴an-3n=2?(-2)n1

          ∴an=3n+2?(-2)n1=3n-(-2)n                                                                        6分

          ⑵由3nbn=n?(3n-an)=n?[3n-3n+(-2)n]=n?(-2)n

          ∴bn=n?(-)n                                                                                                    8分

          <6

          ∴m≥6                                                                                                                   13分

          21.⑴設(shè)M(x0,y0),則N(x0,-y0),P(x,y)

          AM:y=  、

          BN:y=  、

          聯(lián)立①②  ∴                                                                                      4分

          ∵點(diǎn)M(xo,yo)在圓⊙O上,代入圓的方程:

          整理:y2=-2(x+1)  (x<-1)                                                                             6分

          ⑵由

          設(shè)S(x1、y1),T(x2、y2),ST的中點(diǎn)坐標(biāo)(x0、y0)

          則x1+x2=-(3+)

          x1x2                                                                                                          8分

          中點(diǎn)到直線的距離

          故圓與x=-總相切.                                                                                        14分

          ⑵另解:∵y2=-2(x+1)知焦點(diǎn)坐標(biāo)為(-,0)                                                  2分

          頂點(diǎn)(-1,0),故準(zhǔn)線x=-                                                                              4分

          設(shè)S、T到準(zhǔn)線的距離為d1,d2,ST的中點(diǎn)O',O'到x=-的距離為

          又由拋物線定義:d1+d2=|ST|,∴

          故以ST為直徑的圓與x=-總相切                                                                      8分

           


          同步練習(xí)冊答案