日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1.  已知橢圓方程是,橢圓左焦點(diǎn)為F1,O為坐標(biāo)原點(diǎn),A為橢圓上一點(diǎn),M在線段AF1上,且滿足,||=2,則A的橫坐標(biāo)是(    )

          A.          B.            C.          D.

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0),⊙O:x2+y2=b2,點(diǎn)A、F分別是橢圓C的左頂點(diǎn)和左焦點(diǎn),點(diǎn)P是⊙O上的動(dòng)點(diǎn).
          (1)若P(-1,
          3
          ),PA是⊙O的切線,求橢圓C的方程;
          (2)若
          PA
          PF
          是一個(gè)常數(shù),求橢圓C的離心率;
          (3)當(dāng)b=1時(shí),過(guò)原點(diǎn)且斜率為k的直線交橢圓C于D、E兩點(diǎn),其中點(diǎn)D在第一象限,它在x軸上的射影為點(diǎn)G,直線EG交橢圓C于另一點(diǎn)H,是否存實(shí)數(shù)a,使得對(duì)任意的k>0,都有DE⊥DH?若存在,求出a的值,若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知橢圓方程為
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          ,O為原點(diǎn),點(diǎn)M是橢圓右準(zhǔn)線上的動(dòng)點(diǎn),以O(shè)M為直徑的圓與以橢圓長(zhǎng)軸為直徑的圓交于P、Q兩點(diǎn),直線PQ與橢圓相交于A、B兩點(diǎn),則|AB|的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓兩個(gè)焦點(diǎn)的坐標(biāo)分別是(-1,0),(1,0),并且經(jīng)過(guò)點(diǎn)(2,0),則它的標(biāo)準(zhǔn)方程是(  )
          A、
          x2
          2
          +
          y2
          3
          =1
          B、
          x2
          3
          +
          y2
          2
          =1
          C、
          x2
          3
          +
          y2
          4
          =1
          D、
          x2
          4
          +
          y2
          3
          =1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,并且焦距為2,短軸與長(zhǎng)軸的比是
          3
          2

          (1)求橢圓的方程;
          (2)已知橢圓中有如下定理:過(guò)橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          上任意一點(diǎn)M(x0,y0)的切線唯一,且方程為
          x0x
          a2
          +
          y0y
          b2
          =1
          ,利用此定理求過(guò)橢圓的點(diǎn)(1,
          3
          2
          )
          的切線的方程;
          (3)如圖,過(guò)橢圓的右準(zhǔn)線上一點(diǎn)P,向橢圓引兩條切線PA,PB,切點(diǎn)為A,B,求證:A,F(xiàn),B三點(diǎn)共線.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案