日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 7.已知正數(shù)x.y滿足等式x+y-2xy+4=0.則A.xy的最大值是2.且x+y的最小值為4 B.xy的最小值是4.且x+y的最大值為4C.xy的最大值是2.且x+y的最大值為4 D.xy的最小值是4.且x+y的最小值為4 查看更多

           

          題目列表(包括答案和解析)

          已知數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,)在直線y=x+上;數(shù)列{bn}滿足bn+2-2bn+1-bn=0(n∈N*),且b3=11,它的前9項(xiàng)和為153.

          (1)求數(shù)列{an}、{bn}的通項(xiàng)公式;

          (2)設(shè)cn,數(shù)列{cn}的前n項(xiàng)和為Tn,求使不等式Tn對(duì)一切n∈N*都成立的最大正整數(shù)k的值;

          查看答案和解析>>

          若實(shí)數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠(yuǎn)離m.

          (1)若x2-1比1遠(yuǎn)離0,求x的取值范圍;

          (2)對(duì)任意兩個(gè)不相等的正數(shù)a、b,證明:a3+b3比a2b+ab2遠(yuǎn)離2ab;

          (3)已知函數(shù)f(x)的定義域.任取x∈D,f(x)等于sinx和cosx中遠(yuǎn)離0的那個(gè)值.寫出函數(shù)f(x)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).

          查看答案和解析>>

          若實(shí)數(shù)x、ym滿足|xm|<|ym|,則稱xy接近m

          (1)若x21比3接近0,求x的取值范圍;

          (2)對(duì)任意兩個(gè)不相等的正數(shù)a、b,證明:a2b+ab2a3b3接近2ab;

          (3)已知函數(shù)f(x)的定義域D={x|x,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那個(gè)值.寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).

          查看答案和解析>>

          已知函數(shù)f(t)對(duì)任意實(shí)數(shù)x、y都有:f(x+y)=f(x)+f(y)+3xy(x+y+2)+3,且f(1)=1.

          (1)求f(0)、f(-1)、f(2)的值;

          (2)若t為正整數(shù),求f(t)的表達(dá)式.

          (3)滿足條件f(t)=t的所有整數(shù)t能否構(gòu)成等差數(shù)列?若能構(gòu)成等差數(shù)列,求出此數(shù)列;若不能構(gòu)成等差數(shù)列,請(qǐng)說明理由.

          查看答案和解析>>

          已知二次函數(shù)f(x)=ax2+bx+c的圖像的頂點(diǎn)坐標(biāo)是(,-),且f(3)=2

          (Ⅰ)求y=f(x)的表達(dá)式,并求出f(1),f(2)的值;

          (Ⅱ)數(shù)列{an},{bn},若對(duì)任意的實(shí)數(shù)x都滿足g(x)·f(x)+anx+bn=xn+1,n∈N*,其中g(shù)(x)是定義在實(shí)數(shù)R上的一個(gè)函數(shù),求數(shù)列{an}、{bn}的通項(xiàng)公式;

          (Ⅲ)設(shè)圓Cn:(x-an)2+(y-bn)2,若圓Cn與圓Cn+1外切,{rn}是各項(xiàng)都是正數(shù)的等比數(shù)列,記Sn是前n個(gè)圓的面積之和,求.(n∈N*)

          查看答案和解析>>

          一、選擇題

          1.D  2.A  3.C  4.D  5.B  6.C  7.D  8.B  9.A  10.A

          二、填空題

          11.148  12.-4  13.  14.-6  15.①②③④

          三、解答題

          16.解:⑴

                                                                                                                           3分

          =1+1+2cos2x

          =2+2cos2x

          =4cos2x

          ∵x∈[0,]  ∴cosx≥0

          =2cosx                                                                                                    6分

          ⑵ f (x)=cos2x-?2cosx?sinx

                =cos2x-sin2x

                =2cos(2x+)                                                                                           8分

          ∵0≤x≤  ∴

            ∴

          ,當(dāng)x=時(shí)取得該最小值

           ,當(dāng)x=0時(shí)取得該最大值                                                                  12分

          17.由題意知,在甲盒中放一球概率為,在乙盒放一球的概率為                    3分

          ①當(dāng)n=3時(shí),x=3,y=0的概率為                                              6分

          ②|x-y|=2時(shí),有x=3,y=1或x=1,y=3

          它的概率為                                                                12分

          18.解:⑴證明:在正方形ABCD中,AB⊥BC

          又∵PB⊥BC  ∴BC⊥面PAB  ∴BC⊥PA

          同理CD⊥PA  ∴PA⊥面ABCD    4分

          ⑵在AD上取一點(diǎn)O使AO=AD,連接E,O,

          則EO∥PA,∴EO⊥面ABCD 過點(diǎn)O做

          OH⊥AC交AC于H點(diǎn),連接EH,則EH⊥AC,

          從而∠EHO為二面角E-AC-D的平面角                                                             6分

          在△PAD中,EO=AP=在△AHO中∠HAO=45°,

          ∴HO=AOsin45°=,∴tan∠EHO=

          ∴二面角E-AC-D等于arctan                                                                   8分

          ⑶當(dāng)F為BC中點(diǎn)時(shí),PF∥面EAC,理由如下:

          ∵AD∥2FC,∴,又由已知有,∴PF∥ES

          ∵PF面EAC,EC面EAC  ∴PF∥面EAC,

          即當(dāng)F為BC中點(diǎn)時(shí),PF∥面EAC                                                                         12分

          19.⑴f '(x)=3x2+2bx+c,由題知f '(1)=03+2b+c=0,

          f (1)=-11+b+c+2=-1

          ∴b=1,c=-5                                                                                                    3分

          f (x)=x3+x2-5x+2,f '(x)=3x2+2x-5

          f (x)在[-,1]為減函數(shù),f (x)在(1,+∞)為增函數(shù)

          ∴b=1,c=-5符合題意                                                                                      5分

          ⑵即方程:恰有三個(gè)不同的實(shí)解:

          x3+x2-5x+2=k(x≠0)

          即當(dāng)x≠0時(shí),f (x)的圖象與直線y=k恰有三個(gè)不同的交點(diǎn),

          由⑴知f (x)在為增函數(shù),

          f (x)在為減函數(shù),f (x)在(1,+∞)為增函數(shù),

          ,f (1)=-1,f (2)=2

          且k≠2                                                                                               12分

          20.⑴∵

                                                                                                   3分

          ∴{an-3n}是以首項(xiàng)為a1-3=2,公比為-2的等比數(shù)列

          ∴an-3n=2?(-2)n1

          ∴an=3n+2?(-2)n1=3n-(-2)n                                                                        6分

          ⑵由3nbn=n?(3n-an)=n?[3n-3n+(-2)n]=n?(-2)n

          ∴bn=n?(-)n                                                                                                    8分

          <6

          ∴m≥6                                                                                                                   13分

          21.⑴設(shè)M(x0,y0),則N(x0,-y0),P(x,y)

          AM:y=  、

          BN:y=  、

          聯(lián)立①②  ∴                                                                                      4分

          ∵點(diǎn)M(xo,yo)在圓⊙O上,代入圓的方程:

          整理:y2=-2(x+1)  (x<-1)                                                                             6分

          ⑵由

          設(shè)S(x1、y1),T(x2、y2),ST的中點(diǎn)坐標(biāo)(x0、y0)

          則x1+x2=-(3+)

          x1x2                                                                                                          8分

          中點(diǎn)到直線的距離

          故圓與x=-總相切.                                                                                        14分

          ⑵另解:∵y2=-2(x+1)知焦點(diǎn)坐標(biāo)為(-,0)                                                  2分

          頂點(diǎn)(-1,0),故準(zhǔn)線x=-                                                                              4分

          設(shè)S、T到準(zhǔn)線的距離為d1,d2,ST的中點(diǎn)O',O'到x=-的距離為

          又由拋物線定義:d1+d2=|ST|,∴

          故以ST為直徑的圓與x=-總相切                                                                      8分

           


          同步練習(xí)冊(cè)答案