日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 2009年山東省濱州市高考模擬考試

          數(shù)學(xué)試題(文科)2009.3

          本試卷共4頁,分第I卷(選擇題)和第II卷(非選擇題)兩部分.共150分,考試時間120分鐘.考生作答時,將答案答在答題卡上,在本試卷上答題無效.考試結(jié)束后,將本試卷和答題卡一并交回.

          參考公式:

          樣本數(shù)據(jù),,的方差

          ,其中為樣本平均數(shù).

          錐體體積公式,其中為底面面積、為高.

          球的表面積、體積公式 , 其中為球的半徑.

          第Ⅰ卷(選擇題 共60分)

          注意事項:

          1. 答第Ⅰ卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號考試科目填寫在答題卡上.

          2. 第Ⅰ卷選擇題每題選出答案后,用2B鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑.(注意:為方便本次閱卷,請將第Ⅰ卷選擇題的答案涂在另一張答題卡上)如需改動,用橡皮擦干凈后,再改涂其他答案標(biāo)號.

          一、選擇題:本大題共12小題,每小題5分,滿分60分.在每小題給出的四個選項中,只有一項是符合題目要求的.

          (1)集合A={-1,0,1},B={},則AB=

                (A) {0}                   (B) {1}                (C){0,1}             (D){-1,0,1}

          試題詳情

          (2)已知,且為實數(shù),則等于

          試題詳情

          (A) 1         (B)­              (C)           (D)

          試題詳情

          (3)使不等式成立的必要不充分條件是

          試題詳情

                 (A)             (B)

          試題詳情

          (C)              (D) ,或

          (4)右圖是一個幾何體的三視圖,根據(jù)圖中數(shù)據(jù),

          可得該幾何體的表面積為

          試題詳情

           (A)32              (B)16

          試題詳情

           (C)12              (D)8

          試題詳情

          (5)偶函數(shù)在區(qū)間[0,]()上是單調(diào)函數(shù),且,則方程 在區(qū)間[-,]內(nèi)根的個數(shù)是

              (A) 3          (B) 2                          (C) 1                           (D)0

          試題詳情

          (6)在等比數(shù)列6ec8aac122bd4f6e的值為

                 (A) 9            (B) 1                       (C)2                            (D)3

          試題詳情

          (7)在區(qū)域內(nèi)任取一點,則點落在單位圓內(nèi)的概率為

          試題詳情

             (A)          (B)            (C)                (D)

          試題詳情

          (8)以雙曲線的中心為頂點,右焦點為焦點的拋物線方程是

          試題詳情

             (A)      (B)      (C)     (D)

          試題詳情

          (9)已知點在曲線上,且曲線在點處的切線與直線垂直,則點的坐標(biāo)為

             (A)(1,1)     (B)(-1,0)    (C)(-1,0)或(1,0)     (D)(1,0)或(1,1)

          試題詳情

          (10)已知函數(shù)的大致圖象如右圖,其中為常數(shù),則   

          試題詳情

          函數(shù)的大致圖象是

           

          試題詳情

          試題詳情

          (11)定義運算:,將函數(shù)的圖象向左平移)個單位,所得圖象對應(yīng)的函數(shù)為偶函數(shù),則的最小值為

          試題詳情

          (A)              (B)              (C)              (D)

          (12)下列結(jié)論

          試題詳情

          ①命題“”的否定是“”;

          試題詳情

          ②當(dāng)時,函數(shù)的圖象都在直線的上方;

          試題詳情

          ③定義在上的奇函數(shù),滿足,則的值為0.

          試題詳情

          ④若函數(shù)在定義域內(nèi)是增函數(shù),則實數(shù)的取值范圍為.

          其中,正確結(jié)論的個數(shù)是

          (A) 1               (B) 2              (C) 3             (D) 4

           

          第Ⅱ卷(非選擇題 共90分)

          注意事項:

          ⒈ 第Ⅱ卷包括填空題和解答題共兩個大題.

          試題詳情

          ⒉ 第Ⅱ卷所有題目的答案,使用0.5毫米的黑色中性(簽字)筆書寫,字體工整,筆跡清楚.

          ⒊ 請按照題號在各題的答題區(qū)域(黑色線框)內(nèi)作答,超出答題區(qū)域書寫的答案無效.

          <legend id="o5kww"></legend>
          <style id="o5kww"><abbr id="o5kww"></abbr></style>

          <strong id="o5kww"><u id="o5kww"></u></strong>
        2. <sub id="o5kww"></sub>

          1,3,5

          試題詳情

          二、填空題:本大題共4小題,每小題4分,共16分.請把答案直接填寫在答題卡上相應(yīng)題號后的橫線上.

          (14)在等差數(shù)列中,若,則數(shù)列的前11項和=       .

          試題詳情

          (15)對一個作直線運動的質(zhì)點的運動過程觀測了8次, 第次觀測

          試題詳情

          得到的數(shù)據(jù)為,具體如下表所示:

          試題詳情

          1

          2

          3

          4

          5

          6

          7

          8

          試題詳情

          40

          41

          43

          43

          44

          46

          47

          48

          在對上述統(tǒng)計數(shù)據(jù)的分析中,一部分計算見如圖所示的算法流程 

          試題詳情

          圖(其中是這8個數(shù)據(jù)的平均數(shù)),則輸出的的值是_        .

          試題詳情

          (16)如果直線ykx+1與圓交于M、N

          試題詳情

          兩點,且MN關(guān)于直線xy=0對稱,若為平面區(qū)域

          試題詳情

          內(nèi)任意一點,則的取值范圍是            .

          (17)(本小題滿分12分)

           

          高一

          高二

          高三

          女生

          373

          x

          y

          男生

          377

          370

          z

          某高級中學(xué)共有學(xué)生2000人,各年級男、女生人數(shù)如下表:

          試題詳情

          三、解答題:本大題共6小題,共74分.解答應(yīng)寫出文字說明、證明過程或演算步驟.

          已知在全校學(xué)生中隨機(jī)抽取1名,抽到高二年級女生的概率是0.19.

          (Ⅰ)現(xiàn)用分層抽樣的方法在全校抽取48名學(xué)生,問應(yīng)在高三年級抽取多少人?

          試題詳情

          (Ⅱ)已知求高三年級女生比男生多的概率.

           

           

           

           

          (18)(本小題滿分12分)

          試題詳情

          已知、分別為的三邊、所對的角,向量,且.

          試題詳情

          (Ⅰ)求角的大。

          試題詳情

          (Ⅱ)若,,成等差數(shù)列,且,求邊的長.

           

           

           

           

           

          試題詳情

          (19)(本小題滿分12分)

          試題詳情

          如圖,三棱錐中,、、兩兩互相垂直,且,,、分別為、的中點.

          試題詳情

          (Ⅰ)求證:平面

          試題詳情

          (Ⅱ)求證:平面平面;

          試題詳情

          (Ⅲ)求三棱錐的體積.

           

           

           

           

           

           

           

           

          (20)(本小題滿分12分)

          試題詳情

          已知等差數(shù)列的前項和為,公差成等比數(shù)列.

          試題詳情

          (Ⅰ)求數(shù)列的通項公式;

          試題詳情

          (Ⅱ)若從數(shù)列中依次取出第2項、第4項、第8項,……,,……,按原來順序組成一個新數(shù)列,記該數(shù)列的前項和為,求的表達(dá)式.

           

           

           

           

          (21)(本小題滿分12分)

          試題詳情

          已知定義在上的函數(shù)在區(qū)間上的最大值是5,最小值是-11.

          試題詳情

          (Ⅰ)求函數(shù)的解析式;

          試題詳情

          (Ⅱ)若時,恒成立,求實數(shù)的取值范圍.

           

           

           

           

          (22)(本小題滿分14分)

          試題詳情

          已知直線所經(jīng)過的定點恰好是橢圓的一個焦點,且橢圓上的點到點的最大距離為8.

          試題詳情

          (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

          試題詳情

          (Ⅱ)已知圓,直線.試證明:當(dāng)點在橢圓上運動時,直線與圓恒相交,并求直線被圓所截得弦長的取值范圍.

           

           

           

           

          試題詳情

              2009.3

          一、選擇題

          (1)B  (2)A  (3)B (4)C (5)B (6)D

          (7)D   (8)C  (9)C (10)B (11)A (12)C

          二、填空題

            1. 1,3,5

              三、解答題

              (17)解:(Ⅰ)-             ---------------------------2分

              高三年級人數(shù)為-------------------------3分

              現(xiàn)用分層抽樣的方法在全校抽取48名學(xué)生,應(yīng)在高三年級抽取的人數(shù)為

              (人).                       --------------------------------------6分

              (Ⅱ)設(shè)“高三年級女生比男生多”為事件,高三年級女生、男生數(shù)記為.

              由(Ⅰ)知

              則基本事件空間包含的基本事件有

              共11個,     ------------------------------9分

              事件包含的基本事件有

              共5個   

                              --------------------------------------------------------------11分

              答:高三年級女生比男生多的概率為.  …………………………………………12分

              (18)解:(Ⅰ)  …………2分

              中,由于

                                                      …………3分

              ,

                                     

              ,所以,而,因此.…………6分

                 (Ⅱ)由

              由正弦定理得                                …………8分

              ,

              ,由(Ⅰ)知,所以    …………10分

              由余弦弦定理得 ,     …………11分

                                                             …………12分

              (19)(Ⅰ)證明:∵、分別為的中點,∴.

                   又∵平面平面

              平面                                         …………4分

              (Ⅱ)∵,,∴平面.

              又∵,∴平面.

              平面,∴平面平面.               …………8分

              (Ⅲ)∵平面,∴是三棱錐的高.

              在Rt△中,.

                  在Rt△中,.

               ∵,的中點,

              ,

              .        ………………12分

              (20)解:(Ⅰ)依題意得

                                           …………2分

               解得,                                             …………4分

              .       …………6分

                 (Ⅱ)由已知得,                  …………8分

                                                                       ………………12分

              (21)解:(Ⅰ)

                    令=0,得                        ………2分

              因為,所以可得下表:

              0

              +

              0

              -

              極大

                                                                        ………………4分

              因此必為最大值,∴,因此

                   ,

                  即,∴,

               ∴                                       ……………6分

              (Ⅱ)∵,∴等價于, ………8分

               令,則問題就是上恒成立時,求實數(shù)的取值范圍,為此只需,即,                 …………10分

              解得,所以所求實數(shù)的取值范圍是[0,1].            ………………12分

              (22)解:(Ⅰ)由得,,

              所以直線過定點(3,0),即.                       …………………2分

               設(shè)橢圓的方程為,

              ,解得,

              所以橢圓的方程為.                    ……………………5分

              (Ⅱ)因為點在橢圓上運動,所以,      ………………6分

              從而圓心到直線的距離

              所以直線與圓恒相交.                             ……………………9分

              又直線被圓截得的弦長

              ,       …………12分

              由于,所以,則,

              即直線被圓截得的弦長的取值范圍是.  …………………14分