【題目】如圖,正四面體的頂點(diǎn)
、
、
分別在兩兩垂直的三條射線
,
,
上,則在下列命題中,錯(cuò)誤的是( )
A. 是正三棱錐
B. 直線與平面
相交
C. 直線與平面
所成的角的正弦值為
D. 異面直線和
所成角是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù),
),在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)系中,曲線
.
(1)求曲線的普通方程,并將
的方程化為極坐標(biāo)方程;
(2)直線的極坐標(biāo)方程為
,其中
滿足
,若曲線
與
的公共點(diǎn)都在
上,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象上有一點(diǎn)列
,點(diǎn)
在
軸上的射影是
,且
(
且
),
.
(1)求證: 是等比數(shù)列,并求出數(shù)列
的通項(xiàng)公式;
(2)對任意的正整數(shù),當(dāng)
時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍.
(3)設(shè)四邊形的面積是
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某山區(qū)外圍有兩條相互垂直的直線型公路,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計(jì)劃修建一條連接兩條公路和山區(qū)邊界的直線型公路.記兩條相互垂直的公路為,山區(qū)邊界曲線為
.計(jì)劃修建的公路為
,如圖所示,
為
的兩個(gè)端點(diǎn),測得點(diǎn)
到
的距離分別為5千米和40千米,點(diǎn)
到
的距離分別為20千米和2.5千米,以
所在直線分別為
軸,建立平面直角坐標(biāo)系
.假設(shè)曲線
符合函數(shù)
(其中
為常數(shù))模型.
(1)求的值;
(2)設(shè)公路與曲線
相切于
點(diǎn),
的橫坐標(biāo)為
.
①請寫出公路長度的函數(shù)解析式
,并寫出其定義域;
②當(dāng)為何值時(shí),公路
的長度最短?求出最短長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P-ABCD的底面是邊長為1的正方形,且側(cè)棱PC⊥底面ABCD,且PC=2,E是側(cè)棱PC上的動(dòng)點(diǎn)
(1)求四棱錐P-ABCD的體積;
(2)證明:BD⊥AE。
(3)求二面角P-BD-C的正切值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,點(diǎn)
是直線
上的一動(dòng)點(diǎn),過點(diǎn)
作圓
的切線
,切點(diǎn)為
.
(1)當(dāng)切線的長度為
時(shí),求點(diǎn)
的坐標(biāo);
(2)若的外接圓為圓
,試問:當(dāng)
在直線
上運(yùn)動(dòng)時(shí),圓
是否過定點(diǎn)?若存在,求出所有的定點(diǎn)的坐標(biāo);若不存在,說明理由.
(3)求線段長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 四棱錐中, 平面
平面
,
為線段
上一點(diǎn),
為
的中點(diǎn).
(1)證明: 平面
;
(2)求二面角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com