【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為
(
為參數(shù),
),在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸非負(fù)軸為極軸的極坐標(biāo)系中,曲線
:
(
為極角).
(1)將曲線化為極坐標(biāo)方程,當(dāng)
時(shí),將
化為直角坐標(biāo)方程;
(2)若曲線與
相交于一點(diǎn)
,求
點(diǎn)的直角坐標(biāo)使
到定點(diǎn)
的距離最小.
【答案】(1) ,
,
(2)
【解析】試題分析:(1)利用平方關(guān)系消參得到曲線的普通方程進(jìn)而化為極坐標(biāo)方程,由
化簡得
,即可得到
化為直角坐標(biāo)方程;
(2)當(dāng)點(diǎn)到定點(diǎn)
的距離最小時(shí),
的延長線過(1,0),此時(shí)
所在直線的傾斜角為
,數(shù)形結(jié)合可得結(jié)果.
試題解析:
(Ⅰ)由的參數(shù)方程得
,化簡得
,
則,
.
由化簡得
,
則:
.
(Ⅱ)當(dāng)點(diǎn)到定點(diǎn)
的距離最小時(shí),
的延長線過(1,0),
此時(shí)所在直線的傾斜角為
,
由數(shù)形結(jié)合可知,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱中,
為正三角形,點(diǎn)
在棱
上,且
,點(diǎn)
,
分別為棱
,
的中點(diǎn).
(1)證明:平面
;
(2)若,求直線
與平面
所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,點(diǎn)
在橢圓
上.
(1)求橢圓的方程;
(2)經(jīng)過橢圓的右焦點(diǎn)
的直線
與橢圓
交于
、
兩點(diǎn),
、
分別為橢圓
的左、右頂點(diǎn),記
與
的面積分別為
和
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為
(
為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的普通方程,并說明其表示什么軌跡;
(2)若直線的極坐標(biāo)方程為
,試判斷直線
與曲線
的位置關(guān)系,若相交,請求出其弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二進(jìn)制規(guī)定:每個(gè)二進(jìn)制數(shù)由若干個(gè)0、1組成,且最高位數(shù)字必須為1.若在二進(jìn)制中,是所有
位二進(jìn)制數(shù)構(gòu)成的集合,對于
,
,
表示
和
對應(yīng)位置上數(shù)字不同的位置個(gè)數(shù).例如當(dāng)
,
時(shí)
,當(dāng)
,
時(shí)
.
(1)令,求所有滿足
,且
的
的個(gè)數(shù);
(2)給定,對于集合
中的所有
,求
的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),
.
()設(shè)
,討論函數(shù)
的單調(diào)性.
()設(shè)
,求證:當(dāng)
時(shí),
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與橢圓
相交于
兩點(diǎn),與
軸,
軸分別相交于點(diǎn)
和點(diǎn)
,且
,點(diǎn)
是點(diǎn)
關(guān)于
軸的對稱點(diǎn),
的延長線交橢圓于點(diǎn)
,過點(diǎn)
分別做
軸的垂線,垂足分別為
.
(1) 若橢圓的左、右焦點(diǎn)與其短軸的一個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)
在橢圓
上,求橢圓
的方程;
(2)當(dāng)時(shí),若點(diǎn)
平分線段
,求橢圓
的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的左焦點(diǎn)為
,上頂點(diǎn)為
,長軸長為
,
為直線
:
上的動(dòng)點(diǎn),
,
.當(dāng)
時(shí),
與
重合.
(1)若橢圓的方程;
(2)若直線交橢圓
于
,
兩點(diǎn),若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱的所有棱長均
,
為棱
(不包括端點(diǎn))上一動(dòng)點(diǎn),
是
的中點(diǎn).
(Ⅰ)若,求
的長;
(Ⅱ)當(dāng)在棱
(不包括端點(diǎn))上運(yùn)動(dòng)時(shí),求平面
與平面
的夾角的余弦值的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com