日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知曲線C:(5-m)x2+(m-2)y2=8(m∈R)
          (1)若曲線C是焦點(diǎn)在x軸點(diǎn)上的橢圓,求m的取值范圍;
          (2)設(shè)m=4,曲線c與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線y=kx+4與曲線c交于不同的兩點(diǎn)M、N,直線y=1與直線BM交于點(diǎn)G.求證:A,G,N三點(diǎn)共線.
          (1)原曲線方程可化簡(jiǎn)得:
          x2
          8
          5-m
          +
          y2
          8
          m-2
          =1

          由題意,曲線C是焦點(diǎn)在x軸點(diǎn)上的橢圓可得:
          8
          5-m
          8
          m-2
          8
          5-m
          >0
          8
          m-2
          >0
          ,解得:
          7
          2
          <m<5

          (2)證明:由已知直線代入橢圓方程化簡(jiǎn)得:(2k2+1)x2+16kx+24=0,△=32(2k2-3)>0,解得:k2
          3
          2

          由韋達(dá)定理得:xM+xN=-
          16k
          2k2+1
          ①,xMxN=
          24
          2k2+1
          ,②
          設(shè)N(xN,kxN+4),M(xM,kxM+4),G(xG,1),MB方程為:y=
          kxM+6
          xM
          x-2
          ,則G(
          3xM
          kxM+6
          ,1)
          ,
          AG
          =(
          3xM
          kxM+6
          ,-1)
          ,
          AN
          =(xN,kxN+2),
          欲證A,G,N三點(diǎn)共線,只需證
          AG
          ,
          AN
          共線
          3xM
          xMk+6
          (xNk+2)=-xN
          成立,化簡(jiǎn)得:(3k+k)xMxN=-6(xM+xN
          將①②代入可得等式成立,則A,G,N三點(diǎn)共線得證.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,外一點(diǎn),是切線,為切點(diǎn),割線相交于,,的中點(diǎn),的延長(zhǎng)線交于點(diǎn).證明:
          (1)
          (2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓C1
          x2
          4
          +y2=1,橢圓C2以C1的長(zhǎng)軸為短軸,且與C1有相同的離心率.
          (1)求橢圓C2的方程;
          (2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓C1和C2上,
          OB
          =2
          OA
          ,求直線AB的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,F(xiàn)1,F(xiàn)2分別是橢圓C的左、右焦點(diǎn),M是橢圓短軸的一個(gè)端點(diǎn),過(guò)F1的直線l與橢圓交于A,B兩點(diǎn),△MF1F2的面積為4,△ABF2的周長(zhǎng)為8
          2

          (Ⅰ)求橢圓C的方程;
          (Ⅱ)設(shè)點(diǎn)Q的坐標(biāo)為(1,0),是否存在橢圓上的點(diǎn)P及以Q為圓心的一個(gè)圓,使得該圓與直線PF1,PF2都相切,如存在,求出P點(diǎn)坐標(biāo)及圓的方程,如不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖橢圓C的方程為
          y2
          a2
          +
          x2
          b2
          =1(a>b>0)
          ,A是橢圓C的短軸左頂點(diǎn),過(guò)A點(diǎn)作斜率為-1的直線交橢圓于B點(diǎn),點(diǎn)P(1,0),且BPy軸,△APB的面積為
          9
          2

          (1)求橢圓C的方程;
          (2)在直線AB上求一點(diǎn)M,使得以橢圓C的焦點(diǎn)為焦點(diǎn),且過(guò)M的雙曲線E的實(shí)軸最長(zhǎng),并求此雙曲線E的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的離心率e=
          2
          2
          ,過(guò)右焦點(diǎn)F且與x軸垂直的直線交橢圓于A,B兩點(diǎn),且|AB|=
          2

          (Ⅰ)求橢圓C的方程;
          (Ⅱ)設(shè)直線l:y=kx+t(t≠0)與橢圓C相交于M,N兩點(diǎn),直線AO平分線段MN,求△OMN的面積的最大值及此時(shí)直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,在平面直角坐標(biāo)系xoy中,已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)經(jīng)過(guò)點(diǎn)M(3
          2
          ,
          2
          ),橢圓的離心率e=
          2
          2
          3

          (1)求橢圓C的方程;
          (2)過(guò)點(diǎn)M作兩直線與橢圓C分別交于相異兩點(diǎn)A、B.若∠AMB的平分線與y軸平行,試探究直線AB的斜率是否為定值?若是,請(qǐng)給予證明;若不是,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          直線y=kx+2與雙曲線x2-y2=2有且只有一個(gè)交點(diǎn),那么實(shí)數(shù)k的值是(  )
          A.k=±1B.k=±
          3
          C.k=±1或k=±
          3
          D.k=±
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          拋物線y2=4x上一定點(diǎn)P(x0,2),直線l的一個(gè)方向向量
          d
          =(1,-1)

          (1)若直線l過(guò)P,求直線l的方程;
          (2)若直線l不過(guò)P,且直線l與拋物線交于A,B兩點(diǎn),設(shè)直線PA,PB的斜率為kPA,kPB,求kPA+kPB的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案