【題目】設(shè)甲、乙、丙三個(gè)乒乓球協(xié)會(huì)的運(yùn)動(dòng)員人數(shù)分別為27,9,18,先采用分層抽樣的方法從這三個(gè)協(xié)會(huì)中抽取6名運(yùn)動(dòng)員參加比賽.
(Ⅰ)求應(yīng)從這三個(gè)協(xié)會(huì)中分別抽取的運(yùn)動(dòng)員人數(shù);
(Ⅱ)將抽取的6名運(yùn)動(dòng)員進(jìn)行編號(hào),編號(hào)分別為,從這6名運(yùn)動(dòng)員中隨機(jī)抽取2名參加雙打比賽.
(ⅰ)用所給編號(hào)列出所有可能的結(jié)果;
(ⅱ)設(shè)為事件“編號(hào)為
的兩名運(yùn)動(dòng)員至少有一人被抽到”,求事件
發(fā)生的概率.
【答案】(Ⅰ)從這三個(gè)協(xié)會(huì)中分別抽取的運(yùn)動(dòng)員人數(shù)為3,1,2;
(Ⅱ)(ⅰ)所有可能的結(jié)果為
共15種;
(ⅱ)事件發(fā)生的概率為
.
【解析】試題分析:(Ⅰ)甲、乙、丙三個(gè)乒乓球協(xié)會(huì)的運(yùn)動(dòng)員人數(shù)分別為27,9,18,采用分層抽樣的方法抽取6名,所以分別抽取的運(yùn)動(dòng)員人數(shù)為即3,1,2人;
(Ⅱ)(ⅰ)從這6名運(yùn)動(dòng)員中隨機(jī)抽取2名參加雙打比賽,列舉出所有可能的結(jié)果共15種.
(ⅱ)編號(hào)為的兩名運(yùn)動(dòng)員至少有一人被抽到的結(jié)果共9種,所以事件
發(fā)生的概率可求.
試題解析:(Ⅰ)應(yīng)從甲、乙、丙這三個(gè)協(xié)會(huì)中分別抽取的運(yùn)動(dòng)員人數(shù)分別為3,1,2;
(Ⅱ)(ⅰ)從這6名運(yùn)動(dòng)員中隨機(jī)抽取2名參加雙打比賽,所有可能的結(jié)果為,
,
,共15種.
(ⅱ)編號(hào)為的兩名運(yùn)動(dòng)員至少有一人被抽到的結(jié)果為
,
,共9種,所以事件
發(fā)生的概率
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
為自然對(duì)數(shù)的底數(shù).
(1)討論的單調(diào)性;
(2)若函數(shù)的圖象與直線
交于
兩點(diǎn),線段
中點(diǎn)的橫坐標(biāo)為
,證明:
為函數(shù)
的導(dǎo)函數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在
上有最大值1和最小值0,設(shè)
.
(1)求的值;
(2)若不等式在
上有解,求實(shí)數(shù)
的取值范圍;
(3)若方程 (
為自然對(duì)數(shù)的底數(shù))有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有10道題,其中6道甲類題,4道乙類題,小明同學(xué)從中任取3道題解答.
(Ⅰ)求小明同學(xué)至少取到1道乙類題的概率;
(Ⅱ)已知所取的3道題中有2道甲類題,1道乙類題.若小明同學(xué)答對(duì)每道甲類題的概率都是,答對(duì)每道乙類題的概率都是
,且各題答對(duì)與否相互獨(dú)立.求小明同學(xué)至少答對(duì)2道題的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面給出了四個(gè)類比推理:
(1)由“若則
”類比推出“若
為三個(gè)向量則
”;
(2)“a,b為實(shí)數(shù),則a=b=0”類比推出“
為復(fù)數(shù),若
”
(3)“在平面內(nèi),三角形的兩邊之和大于第三邊”類比推出“在空間中,四面體的任意三個(gè)面的面積之和大于第四個(gè)面的面積”
(4)“在平面內(nèi),過(guò)不在同一條直線上的三個(gè)點(diǎn)有且只有一個(gè)圓”類比推出“在空間中,過(guò)不在同一個(gè)平面上的四個(gè)點(diǎn)有且只有一個(gè)球”.
上述四個(gè)推理中,結(jié)論正確的個(gè)數(shù)有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】班主任為了對(duì)本班學(xué)生的考試成績(jī)進(jìn)行分析,決定從全班名男同學(xué),
名女同學(xué)中隨機(jī)抽取一個(gè)容量為
的樣本進(jìn)行分析.
(1)如果按性別比例分層抽樣,可以得到多少個(gè)不同的樣本?(只要求寫出計(jì)算式即可,不必計(jì)算出結(jié)果)
(2)隨機(jī)抽取位,他們的數(shù)學(xué)分?jǐn)?shù)從小到大排序是:
,物理分?jǐn)?shù)從小到大排序是:
.
①若規(guī)定分以上(包括
分)為優(yōu)秀,求這
位同學(xué)中恰有
位同學(xué)的數(shù)學(xué)和物理分?jǐn)?shù)均為優(yōu)秀的概率;
②若這位同學(xué)的數(shù)學(xué)、物理分?jǐn)?shù)事實(shí)上對(duì)應(yīng)如下表:
根據(jù)上表數(shù)據(jù),由變量與
的相關(guān)系數(shù)可知物理成績(jī)
與數(shù)學(xué)成績(jī)
之間具有較強(qiáng)的線性相關(guān)關(guān)系,現(xiàn)求
與
的線性回歸方程(系數(shù)精確到
).
參考公式:回歸直線的方程是: ,其中對(duì)應(yīng)的回歸估計(jì)值
,
參考數(shù)據(jù): ,
,
,,
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】太極圖是由黑白兩個(gè)魚形紋組成的圖案,俗稱陰陽(yáng)魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相對(duì)統(tǒng)一的和諧美,定義:能夠?qū)A的周長(zhǎng)和面積同時(shí)等分成兩個(gè)部分的函數(shù)稱為圓
的一個(gè)“太極函數(shù)”,則下列有關(guān)說(shuō)法中:
①對(duì)于圓的所有非常數(shù)函數(shù)的太極函數(shù)中,一定不能為偶函數(shù);
②函數(shù)是圓
的一個(gè)太極函數(shù);
③存在圓,使得
是圓
的一個(gè)太極函數(shù);
④直線所對(duì)應(yīng)的函數(shù)一定是圓
的太極函數(shù);
⑤若函數(shù)是圓
的太極函數(shù),則
所有正確的是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,△
是等邊三角形,△
是等腰直角三角形,
,平面
⊥平面
,
⊥平面
,點(diǎn)
為
的中點(diǎn),連接
.
(1)求證:平面
;
(2)若,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,
為正三角形,
,
,
,
平面
.
(Ⅰ)點(diǎn)在棱
上,試確定點(diǎn)
的位置,使得
平面
;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com