【題目】已知正三棱柱中,所有棱長(zhǎng)都是3,點(diǎn)D,E分別是線段
和
上的點(diǎn),
.
(1)試確定點(diǎn)E的位置,使得平面
,并證明;
(2)若直線與平面
所成角的正弦值為
,求二面角
的余弦值的大小.
【答案】(1)E為三等分點(diǎn),且
,證明見(jiàn)解析;(2)
【解析】
(1)取E為AC的三等分點(diǎn),且AC=3AE,過(guò)E作EK∥CC1,且,得到四邊形BEKD為平行四邊形,有BE∥KD,由線面平行的判定可得BE∥平面ADC1;
(2)設(shè)AC中點(diǎn)為M,設(shè)A1C1的中點(diǎn)為P,分別以MA,MB,MP所在直線為x,y,z軸建立空間直角坐標(biāo)系.由直線與平面
所成角的正弦值為
,可得E點(diǎn)坐標(biāo)為
,然后分別求出平面ABE與平面BEC1的一個(gè)法向量,由兩法向量所成角的余弦值可得二面角A-BE-C1的余弦值.
(1)取E為三等分點(diǎn),且
,過(guò)E作
,
則,所以
為平行四邊形,
所以,又
,
,
所以平面
,證畢;
(2)設(shè)中點(diǎn)為M,設(shè)
中點(diǎn)為P,
分別以,
,
為x,y,z建立空間直角坐標(biāo)系,
則A(,0,0),C(
,0,0),B(0,
,0),
(
,0,3),
,
,
設(shè)平面的一個(gè)法向量為
,
由,取
,
可得,
設(shè)E點(diǎn)坐標(biāo)為,
,
由直線與平面
所成角的正弦值為
,
解得,
可得E點(diǎn)坐標(biāo)為,
即,
易求平面法向量
,
設(shè)平面法向量
,
,
,
由,取
,
可得,
,
又因?yàn)槎娼?/span>為鈍角,
所以所求余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓
的左焦點(diǎn)為
,點(diǎn)
在橢圓
上.
(1)求橢圓的方程;
(2)已知圓,連接
并延長(zhǎng)交圓
于點(diǎn)
為橢圓長(zhǎng)軸上一點(diǎn)(異于左、右焦點(diǎn)),過(guò)點(diǎn)
作橢圓長(zhǎng)軸的垂線分別交橢圓
和圓
于點(diǎn)
(
均在
軸上方).連接
,記
的斜率為
,
的斜率為
.
①求的值;
②求證:直線的交點(diǎn)在定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市從年甲、乙兩種酸奶的日銷(xiāo)售量(單位:箱)的數(shù)據(jù)中分別隨機(jī)抽取
個(gè),并按
、
、
、
、
分組,得到頻率分布直方圖如圖,假設(shè)甲、乙兩種酸奶獨(dú)立銷(xiāo)售且日銷(xiāo)售量相互獨(dú)立.
(1)寫(xiě)出頻率分布直方圖甲中的的值;記甲種酸奶與乙種酸奶日銷(xiāo)售量(單位:箱)的方差分別為
、
,試比較
與
的大小;(只需寫(xiě)出結(jié)論)
(2)估計(jì)在未來(lái)的某一天里,甲、乙兩種酸奶的銷(xiāo)售量恰有一個(gè)高于箱且另一個(gè)不高于
箱的概率;
(3)設(shè)表示在未來(lái)
天內(nèi)甲種酸奶的日銷(xiāo)售量不高于
箱的天數(shù),以日留住量落入各組的頻率為概率,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,雙曲線的右頂點(diǎn)為A,右焦點(diǎn)為F,點(diǎn)B在雙曲線的右支上,矩形OFBD與矩形AEGF相似,且矩形OFBD與矩形AEGF的面積之比為2:1,則該雙曲線的離心率為
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過(guò)點(diǎn)
的直線l的參數(shù)方程為
(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。
(1)寫(xiě)出直線l的普通方程和曲線C的直角坐標(biāo)方程:
(2)若成等比數(shù)列,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已如橢圓C:的兩個(gè)焦點(diǎn)與其中一個(gè)頂點(diǎn)構(gòu)成一個(gè)斜邊長(zhǎng)為4的等腰直角三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)動(dòng)直線l交橢圓C于P,Q兩點(diǎn),直線OP,OQ的斜率分別為k,k'.若,求證△OPQ的面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓〔
>b>0〕與拋物線
有共同的焦點(diǎn)F,且兩曲線在第一象限的交點(diǎn)為M,滿足
.
(1)求橢圓的方程;
(2)過(guò)點(diǎn),斜率為
的直線
與橢圓交于
兩點(diǎn),設(shè)
,假設(shè)
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在
處的切線方程為
.
(1)求的值;
(2)當(dāng)時(shí),
恒成立,求整數(shù)
的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com