日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 棱長為
          2
          的正四面體的外接球半徑為
           
          考點:球內(nèi)接多面體
          專題:計算題,空間位置關(guān)系與距離
          分析:正四面體擴展為正方體,它們的外接球是同一個球,正方體的對角線長就是球的直徑,求出直徑即可求出外接球半徑.
          解答: 解:正四面體擴展為正方體,它們的外接球是同一個球,
          正方體的對角線長就是球的直徑,正方體的棱長為:1;對角線長為:
          3
          ,
          ∴棱長為
          2
          的正四面體的外接球半徑為
          3
          2

          故答案為:
          3
          2
          點評:本題是基礎(chǔ)題,考查正四面體的外接球的半徑的求法,本題的突破口在正四面體轉(zhuǎn)化為正方體,外接球是同一個球,考查計算能力,空間想象能力.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          網(wǎng)絡(luò)公司為了解某地區(qū)人群上網(wǎng)情況,隨機抽取了100名網(wǎng)民進行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的日均上網(wǎng)時間的頻率分布圖(時間單位為:時):
          分組 [0,1) [1,2) [2,3) [3,4) [4,5) [5,6)
          頻率  0.1 0.18  0.22   0.25 0.2   0.05
          將日均上網(wǎng)時間不低于4小時的網(wǎng)民成為“網(wǎng)迷”,已知“網(wǎng)迷”中有10名女性.
          (Ⅰ)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷是否有95%的把握認為“網(wǎng)迷”與性別有關(guān)?
            非網(wǎng)迷 網(wǎng)迷 合計
               
               
          合計      
          (Ⅱ)將日均上網(wǎng)時間不低于5小時的網(wǎng)民成為“超級網(wǎng)迷”,已知超級網(wǎng)迷中有2名女性,若從“超級網(wǎng)迷”中任意選取2人,求至少有1名女性網(wǎng)民的概率.
          附:K2=
          n(ad-bc)2
          (a+b)(c+d)(a+c)(b+d)

          P(K2≥k0)  0.100 0.050  0.010   0.001
           k0  2.706 3.841  6.635  10.828 

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          某科考試中,從甲、乙兩個班級各隨機抽取10名同學的成績進行統(tǒng)計分析,兩班成績的莖葉圖如圖所示,成績不小于90分為及格.
          (1)分別計算甲、乙兩班10名同學成績的平均數(shù),并估計哪班的成績更高;
          (2)在所抽取的20人中的及格同學中,按分層抽樣的方法抽取5人,求甲班恰好抽到一名成績?yōu)?00分以上的同學的概率.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,AE切圓O于點E,AC交圓O于B,C兩點,且與直徑DE交于點M,DM=2,CM=3,BM=6,則tanA=
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          對于整數(shù)a,b,存在唯一一對整數(shù)q和r,使得a=bq+r,0≤r<|b|.特別地,當r=0時,稱b能整除a,記作b|a,已知A={1,2,3,…,23},若B⊆A,card(B)=12(card(B)指集合B中的元素的個數(shù)),且存在a,b∈B,b<a,b|a,則稱B為“諧和集”.
          (1)若存在q∈A,使得2014=92q+r(0≤r<92),則r=
           
          ;
          (2)若集合A的任意子集C為“諧和集”,且card(C)=12,m∈C,則m的最大值為
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          一個幾何體的三視圖如圖所示,則該幾何體的體積為
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          執(zhí)行如圖所示的程序框圖,若輸入n的值為12,則輸出的S的值為
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設(shè)各項均為正整數(shù)的無窮等差數(shù)列{an},滿足a54=2014,且存在正整數(shù)k,使a1,a54,ak成等比數(shù)列,則公差d的所有可能取值之和為
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知動點P(x,y)滿足
          x+y-2≥0
          x-y≤0
          y≤2
          ,動點Q(x,y)在曲線(x-1)2+y2=1上,則|PQ|的最大值與最小值的和為( 。
          A、
          5
          +1
          B、2
          2
          +1
          C、
          5
          +
          2
          2
          D、3
          2
          +1

          查看答案和解析>>

          同步練習冊答案