日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某數(shù)學(xué)小組從醫(yī)院和氣象局獲得20181月至6月份每月20的晝夜溫差,()和患感冒人數(shù)(/人)的數(shù)據(jù),畫(huà)出如圖的折線圖.

          1)建立關(guān)于的回歸方程(精確到0.01),預(yù)測(cè)20191月至6月份晝夜溫差為時(shí)患感冒的人數(shù)(精確到整數(shù));

          2)求的相關(guān)系數(shù),并說(shuō)明的相關(guān)性的強(qiáng)弱(若,則認(rèn)為具有較強(qiáng)的相關(guān)性),

          參考數(shù)據(jù):,,

          相關(guān)系數(shù):,回歸直線方程是,,

          【答案】1關(guān)于的回歸方程為,預(yù)測(cè)20191月至6月份晝夜溫差為時(shí)患感冒的人數(shù)為4人;(2)具有較強(qiáng)的相關(guān)性.

          【解析】

          1)由已知求出系數(shù),得回歸直線方程,令代入回歸方程可得預(yù)測(cè)值;

          2)先求出,結(jié)合(1)中值可得,可得相關(guān)性.

          1)由已知,,

          ,

          關(guān)于的回歸方程為

          時(shí),

          ∴預(yù)測(cè)20191月至6月份晝夜溫差為時(shí)患感冒的人數(shù)為4人;

          (2),

          由已知,

          ,

          ,又,∴

          具有較強(qiáng)的相關(guān)性.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在直角梯形中,,,將直角梯形沿對(duì)角線折起,使點(diǎn)點(diǎn)位置,則四面體的體積的最大值為________,此時(shí),其外接球的表面積為________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若存在,使得對(duì)任意恒成立,則函數(shù)上有下界,其中為函數(shù)的一個(gè)下界;若存在,使得對(duì)任意恒成立,則函數(shù)上有上界,其中為函數(shù)的一個(gè)上界.如果一個(gè)函數(shù)既有上界又有下界,那么稱該函數(shù)有界.

          下述四個(gè)結(jié)論:①1不是函數(shù)的一個(gè)下界;②函數(shù)有下界,無(wú)上界;③函數(shù)有上界,無(wú)下界;④函數(shù)有界.

          其中所有正確結(jié)論的編號(hào)是(

          A.①②B.②④C.③④D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在如圖所示的多面體中,四邊形是矩形,梯形為直角梯形,平面平面,且,.

          1)求證:平面.

          2)求二面角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知,分別為橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,的周長(zhǎng)為6.

          (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

          (Ⅱ)過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),設(shè)為坐標(biāo)原點(diǎn)是否存在常數(shù),使得恒成立請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知,是橢圓的三個(gè)頂點(diǎn),橢圓的離心率,點(diǎn)到直線的距離是.設(shè)是橢圓上位于軸左邊上的任意一點(diǎn),直線,分別交直線,兩點(diǎn),以為直徑的圓記為.

          1)求橢圓的方程;

          2)求證:圓始終與圓相切,并求出所有圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四棱錐M-ABCD中,MB⊥平面ABCD,四邊形ABCD是矩形,AB=MB,E、F分別為MA、MC的中點(diǎn).

          (1)求證:平面BEF⊥平面MAD;

          (2)若,求三棱錐E-ABF的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)EF,且EF=.則下列結(jié)論中正確的個(gè)數(shù)為

          ①AC⊥BE;

          ②EF∥平面ABCD;

          三棱錐A﹣BEF的體積為定值;

          的面積與的面積相等,

          A.4B.3C.2D.1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的左頂點(diǎn)為,右焦點(diǎn)為,點(diǎn)在橢圓上.

          (1)求橢圓的方程;

          (2)若直線與橢圓交于兩點(diǎn),直線分別與軸交于點(diǎn),在軸上,是否存在點(diǎn),使得無(wú)論非零實(shí)數(shù)怎樣變化,總有為直角?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案