【題目】如圖,四棱錐的底面
是邊長(zhǎng)為2的菱形,平面
平面
,
,
,
分別是棱
,
的中點(diǎn).
(1)求證:平面
;
(2)若,求
與平面
所成角的正弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)連接,交
于點(diǎn)
,可證明
,
.從而有
平面
.
同理,平面
.得面面平行后可得線面平行;
(2)以,
,
所在直線為
,
,
軸建立空間直角坐標(biāo)系,寫出各點(diǎn)坐標(biāo),求出平面
的一個(gè)法向量,由空間向量法求得線面角的正弦值.
(1)連接,交
于點(diǎn)
,連接
,
.
由四邊形是菱形知
是
、
中點(diǎn).
因?yàn)?/span>,
分別是棱
,
的中點(diǎn),所以
,
.
又因?yàn)?/span>平面
,
平面
,所以
平面
.
同理,平面
.
因?yàn)?/span>,所以平面
平面
,
因?yàn)?/span>平面
,所以
平面
.
(2)因?yàn)?/span>,
,
是
中點(diǎn),所以
,
,
因?yàn)槠矫?/span>平面
,兩平面的交線為
,所以
平面
,
因?yàn)?/span>是菱形,邊長(zhǎng)為2,所以
,
,
,分別以
,
,
所在直線為
,
,
軸建立空間直角坐標(biāo)系,如圖,
則,
,
,
,
,
,
,
,
設(shè)平面的一個(gè)法向量為
,則
所以,取
,則
,
所以,
所以直線與平面
所成角的正弦值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)討論函數(shù)的單調(diào)性;
(2)證明:若,則對(duì)于任意
,不等式
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)推出消費(fèi)抽現(xiàn)金活動(dòng),顧客消費(fèi)滿1000元可以參與一次抽獎(jiǎng),該活動(dòng)設(shè)置了一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)以及參與獎(jiǎng),獎(jiǎng)金分別為:一等獎(jiǎng)200元、二等獎(jiǎng)100元、三等獎(jiǎng)50元、參與獎(jiǎng)20元,具體獲獎(jiǎng)人數(shù)比例分配如圖,則下列說法中錯(cuò)誤的是( )
A.獲得參與獎(jiǎng)的人數(shù)最多
B.各個(gè)獎(jiǎng)項(xiàng)中一等獎(jiǎng)的總金額最高
C.二等獎(jiǎng)獲獎(jiǎng)人數(shù)是一等獎(jiǎng)獲獎(jiǎng)人數(shù)的兩倍
D.獎(jiǎng)金平均數(shù)為元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)城鄉(xiāng)居民儲(chǔ)蓄存款年底余額(單位:億元)如圖所示,下列判斷一定不正確的是( )
A.城鄉(xiāng)居民儲(chǔ)蓄存款年底余額逐年增長(zhǎng)
B.農(nóng)村居民的存款年底余額所占比重逐年上升
C.到2019年農(nóng)村居民存款年底總余額已超過了城鎮(zhèn)居民存款年底總余額
D.城鎮(zhèn)居民存款年底余額所占的比重逐年下降
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國有四大國粹:京劇、武術(shù)、中醫(yī)和書法.某大學(xué)開設(shè)這四門課供學(xué)生選修,男生甲選其中三門課進(jìn)行學(xué)習(xí),已知他選修了京劇,則他選修書法的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長(zhǎng)為12的正方體中,已知E,F分別為棱AB,
的中點(diǎn),若過點(diǎn)
,E,F的平面截正方體
所得的截面為一個(gè)多邊形,則該多邊形的周長(zhǎng)為________,該多邊形與平面
,ABCD的交線所成角的余弦值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)有教師400人,其中高中教師240人.為了了解該校教師每天課外鍛煉時(shí)間,現(xiàn)利用分層抽樣的方法從該校教師中隨機(jī)抽取了100名教師進(jìn)行調(diào)查,統(tǒng)計(jì)其每天課外鍛煉時(shí)間(所有教師每天課外鍛煉時(shí)間均在分鐘內(nèi)),將統(tǒng)計(jì)數(shù)據(jù)按
,
,
,…,
分成6組,制成頻率分布直方圖如下:假設(shè)每位教師每天課外鍛煉時(shí)間相互獨(dú)立,并稱每天鍛煉時(shí)間小于20分鐘為缺乏鍛煉.
(1)試估計(jì)本校教師中缺乏鍛煉的人數(shù);
(2)從全市高中教師中隨機(jī)抽取3人,若表示每天課外鍛煉時(shí)間少于10分鐘的人數(shù),以這60名高中教師每天課外鍛煉時(shí)間的頻率代替每名高中教師每天課外鍛煉時(shí)間發(fā)生的概率,求隨機(jī)變量
的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】角谷猜想,也叫猜想,是由日本數(shù)學(xué)家角谷靜夫發(fā)現(xiàn)的,是指對(duì)于每一個(gè)正整數(shù),如果它是奇數(shù),則對(duì)它乘3再加1;如果它是偶數(shù),則對(duì)它除以2,如此循環(huán)最終都能夠得到1.如:取
,根據(jù)上述過程,得出6,3,10,5,16,8,4,2,1,共9個(gè)數(shù).若
,根據(jù)上述過程得出的整數(shù)中,隨機(jī)選取兩個(gè)不同的數(shù),則這兩個(gè)數(shù)都是偶數(shù)的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓
的參數(shù)方程為
(
為參數(shù)),與圓
關(guān)于直線
對(duì)稱的圓為
.以原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線
的極坐標(biāo)方程是
.
(1)設(shè)直線與
軸和
軸的交點(diǎn)分別為
,
,
為圓
上的任意一點(diǎn),求
的最大值.
(2)過點(diǎn)且與直線
平行的直線
交圓
于
,
兩點(diǎn),求
的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com