【題目】以直角坐標系的原點為極點,x軸的非負半軸為極軸建立極坐標系,并在兩種坐標系中取相同的長度單位已知直線l的參數(shù)方程為(
為參數(shù),
),拋物線C的普通方程為
.
(1)求拋物線C的準線的極坐標方程;
(2)設直線l與拋物線C相交于A,B兩點,求的最小值及此時
的值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐中,若底面
是正三角形,側(cè)棱長
,
、
分別為棱
、
的中點,并且
,則異面直線
與
所成角為______;三棱錐
的外接球的體積為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),若存在區(qū)間
,使得
,則稱函數(shù)
為“可等域函數(shù)”,區(qū)間
為函數(shù)
的一個“可等域區(qū)間”.給出下列4個函數(shù):
①;②
; ③
; ④
.
其中存在唯一“可等域區(qū)間”的“可等域函數(shù)”為( )
(A)①②③ (B)②③ (C)①③ (D)②③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的幾何體中,正方形所在平面垂直于平面
,四邊形
為平行四邊形,G為
上一點,且
平面
,
.
(1)求證:平面平面
;
(2)當三棱錐體積最大時,求平面
與平面
所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,且AB=1,BC=2, ∠ABC=60°,PA⊥平面ABCD,AE⊥PC于E,
下列四個結論:①AB⊥AC;②AB⊥平面PAC;③PC⊥平面ABE;④BE⊥PC.正確的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列中,
,且
.
(1)的通項公式為__________;
(2)在、
、
、
、
這
項中,被
除余
的項數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線上一點
,
與
關于拋物線的對稱軸對稱,斜率為1的直線交拋物線于
、
兩點,且
、
在直線
兩側(cè).
(1)求證:平分
;
(2)點為拋物線在
、
處切線的交點,若
,求直線
的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com