【題目】在邊長為8的正方形ABCD中,M是BC的中點,N是AD邊上的一點,且DN=3NA,若對于常數(shù)m,在正方形ABCD的邊上恰有6個不同的點P,使,則實數(shù)m的取值范圍是_______.
【答案】
【解析】
建立平面直角坐標系,按照點P在線段上進行逐段分析
的取值范圍及對應(yīng)的解,然后取各個范圍的交集即可得答案.
以AB所在直線為x軸,以AD所在直線為y軸建立平面直角坐標系,如圖所示,
則.
(1)當點P在AB上時,設(shè),
∴,
∴,
∵,
∴.
∴當時有一解,當
時有兩解.
(2)當點P在AD上時,設(shè).
∴,
∴,
∵,
∴.
∴當或
時有一解,當
時有兩解.
(3)若P在DC上,設(shè),
∴,
∴,
∵,
∴.
∴當時有一解,當
時有兩解.
(4)當點P在BC上時,設(shè).
∴,
∴,
∵,
∴.
∴當或
時有一解,當
時有兩解.
綜上,在正方形的四條邊上有且只有6個不同的點P,使得
成立,那么m的取值范圍是
.
故答案為:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點分別是圓心在原點,半徑為
和
的圓上的動點.動點
從初始位置
開始,按逆時針方向以角速度
作圓周運動,同時點
從初始位置
開始,按順時針方向以角速度
作圓周運動.記
時刻,點
的縱坐標分別為
.
(Ⅰ)求時刻,
兩點間的距離;
(Ⅱ)求關(guān)于時間
的函數(shù)關(guān)系式,并求當
時,這個函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四邊形ABCD中,AC=CD=AB=1,
,sin∠BCD=
.
(1)求BC邊的長;
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:,直線l不過原點O且不平行于坐標軸,l與E有兩個交點A,B,線段AB的中點為M.
若
,點K在橢圓E上,
、
分別為橢圓的兩個焦點,求
的范圍;
證明:直線OM的斜率與l的斜率的乘積為定值;
若l過點
,射線OM與橢圓E交于點P,四邊形OAPB能否為平行四邊形?若能,求此時直線l斜率;若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線l:,圓C:
,則下列說法中正確的是( )
A.直線l與圓C有可能無公共點
B.若直線l的一個方向向量為,則
C.若直線l平分圓C的周長,則
D.若直線l與圓C有兩個不同交點M、N,則線段MN的長的最小值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)政府為了解決農(nóng)村教師的住房問題,計劃征用一塊土地蓋一幢建筑總面積為10000公寓樓(每層的建筑面積相同).已知士地的征用費為
,土地的征用面積為第一層的
倍,經(jīng)工程技術(shù)人員核算,第一層建筑費用為
,以后每增高一層,其建筑費用就增加
,設(shè)這幢公寓樓高層數(shù)為n,總費用為
萬元.(總費用為建筑費用和征地費用之和)
(1)若總費用不超過835萬元,求這幢公寓樓最高有多少層數(shù)?
(2)試設(shè)計這幢公寓的樓層數(shù),使總費用最少,并求出最少費用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正數(shù)數(shù)列、
滿足:
≥
,且對一切k≥2,k
,
是
與
的等差中項,
是
與
的等比中項.
(1)若,
,求
,
的值;
(2)求證:是等差數(shù)列的充要條件是
為常數(shù)數(shù)列;
(3)記,當n≥2(n
)時,指出
與
的大小關(guān)系并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形是矩形,
平面
,
,點
在線段
上(不為端點),且滿足
,其中
.
(1)若,求直線
與平面
所成的角的大;
(2)是否存在,使
是
的公垂線,即
同時垂直
?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量
(單位:
)和年利潤
(單位:千元)的影響,對近8年的年宣傳費
和年銷售量
數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
表中,
.
(1)根據(jù)散點圖判斷, 與
哪一個適宜作為年銷售量
關(guān)于年宣傳費
的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于
的回歸方程;
(3)已知這種產(chǎn)品的年利潤與
、
的關(guān)系為
.根據(jù)(2)的結(jié)果要求:年宣傳費
為何值時,年利潤最大?
附:對于一組數(shù)據(jù),
,…,
其回歸直線
的斜率和截距的最小二乘估計分別為
,
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com