日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,棱柱的側(cè)面是菱形,

          (Ⅰ)證明:平面平面
          (Ⅱ)設(shè)上的點(diǎn),且平面,求的值.
          (Ⅰ)詳見(jiàn)解析;(Ⅱ)

          試題分析:(Ⅰ)由題中側(cè)面是菱形,可見(jiàn)它的對(duì)角線相互垂直,即,再加上所給的條件,這樣就出現(xiàn)了一條直線同時(shí)與兩條直線垂直,而這兩條直線確定了要證的兩個(gè)平面中一個(gè)平面,即平面,根據(jù)直線與平面垂直的判定定理可證得平面,最后由平面與平面垂直的判定定理,可以得證; (Ⅱ)由(Ⅱ)中的條件平面,由直線與平面平行的性質(zhì)定理,可構(gòu)造出一個(gè)過(guò)的平面,即為圖中的平面 ,然后在中,由菱形 為一邊中點(diǎn),再結(jié)合三角形中位線不難得出 為的中點(diǎn),這樣得到 

          試題解析:解:(Ⅰ)因?yàn)閭?cè)面是菱形,所以
          又已知
          所又平面,又平面,
          所以平面平面.
          (Ⅱ)設(shè)于點(diǎn),連結(jié)
          是平面與平面的交線,
          因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025446785514.png" style="vertical-align:middle;" />平面,所以.
          的中點(diǎn),所以的中點(diǎn).
          .
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,已知四棱錐中,底面是直角梯形,,,,,平面. 
          (Ⅰ)求證:平面;
          (Ⅱ)求證:平面;
          (Ⅲ)若的中點(diǎn),求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知多面體中,平面,平面,,,的中點(diǎn).

          (1)求證:;
          (2)求直線與平面所成角的余弦值的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,直棱柱中,分別是的中點(diǎn),.

          ⑴證明:;
          ⑵求EC與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,長(zhǎng)方體中,,點(diǎn)E是AB的中點(diǎn).

          (1)證明:平面;
          (2)證明:;
          (3)求二面角的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          如圖所示,直線垂直于⊙所在的平面,內(nèi)接于⊙,且為⊙的直徑,點(diǎn)為線段的中點(diǎn).現(xiàn)有結(jié)論:①;②平面;③點(diǎn)到平面的距離等于線段的長(zhǎng).其中正確的是(    )
          A.①②B.①②③C.①D.②③

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          已知直線  (  )
          A.相交B.平行C.異面D.共面或異面

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          已知直線l⊥平面α,直線mÍ平面β,則下列四個(gè)命題:
          ①若α∥β,則l⊥m;  ②若α⊥β,則l∥m;
          ③若l∥m,則α⊥β;  ④若l⊥m,則α∥β.
          其中正確命題的序號(hào)是       

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          已知直線,平面,且,給出下列命題: 
          ①若,則m⊥;      ②若,則m∥;
          ③若m⊥,則;      ④若m∥,則.其中正確命題的個(gè)數(shù)是(   )
          A.1B.2C.3D.4

          查看答案和解析>>

          同步練習(xí)冊(cè)答案